File: normalizer_context.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (37 lines) | stat: -rw-r--r-- 1,007 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# @package regularizer_context
# Module caffe2.python.normalizer_context





from caffe2.python import context
from caffe2.python.modifier_context import (
    ModifierContext, UseModifierBase)


class NormalizerContext(ModifierContext, context.DefaultManaged):
    """
    provide context to allow param_info to have different normalizers
    """

    def has_normalizer(self, name):
        return self._has_modifier(name)

    def get_normalizer(self, name):
        assert self.has_normalizer(name), (
            "{} normalizer is not provided!".format(name))
        return self._get_modifier(name)


class UseNormalizer(UseModifierBase):
    '''
    context class to allow setting the current context.
    Example usage with layer:
        normalizers = {'norm1': norm1, 'norm2': norm2}
        with UseNormalizer(normalizers):
            norm = NormalizerContext.current().get_normalizer('norm1')
            layer(norm=norm)
    '''
    def _context_class(self):
        return NormalizerContext