1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
import numpy as np
import unittest
from hypothesis import given, settings
import hypothesis.strategies as st
from caffe2.python import brew, core, model_helper, rnn_cell
import caffe2.python.workspace as ws
class TestObservers(unittest.TestCase):
def setUp(self):
core.GlobalInit(["python", "caffe2"])
ws.ResetWorkspace()
self.model = model_helper.ModelHelper()
brew.fc(self.model, "data", "y",
dim_in=4, dim_out=2,
weight_init=('ConstantFill', dict(value=1.0)),
bias_init=('ConstantFill', dict(value=0.0)),
axis=0)
ws.FeedBlob("data", np.zeros([4], dtype='float32'))
ws.RunNetOnce(self.model.param_init_net)
ws.CreateNet(self.model.net)
def testObserver(self):
ob = self.model.net.AddObserver("TimeObserver")
ws.RunNet(self.model.net)
print(ob.average_time())
num = self.model.net.NumObservers()
self.model.net.RemoveObserver(ob)
assert(self.model.net.NumObservers() + 1 == num)
@given(
num_layers=st.integers(1, 4),
forward_only=st.booleans()
)
@settings(deadline=1000)
def test_observer_rnn_executor(self, num_layers, forward_only):
'''
Test that the RNN executor produces same results as
the non-executor (i.e running step nets as sequence of simple nets).
'''
Tseq = [2, 3, 4]
batch_size = 10
input_dim = 3
hidden_dim = 3
run_cnt = [0] * len(Tseq)
avg_time = [0] * len(Tseq)
for j in range(len(Tseq)):
T = Tseq[j]
ws.ResetWorkspace()
ws.FeedBlob(
"seq_lengths",
np.array([T] * batch_size, dtype=np.int32)
)
ws.FeedBlob("target", np.random.rand(
T, batch_size, hidden_dim).astype(np.float32))
ws.FeedBlob("hidden_init", np.zeros(
[1, batch_size, hidden_dim], dtype=np.float32
))
ws.FeedBlob("cell_init", np.zeros(
[1, batch_size, hidden_dim], dtype=np.float32
))
model = model_helper.ModelHelper(name="lstm")
model.net.AddExternalInputs(["input"])
init_blobs = []
for i in range(num_layers):
hidden_init, cell_init = model.net.AddExternalInputs(
"hidden_init_{}".format(i),
"cell_init_{}".format(i)
)
init_blobs.extend([hidden_init, cell_init])
output, last_hidden, _, last_state = rnn_cell.LSTM(
model=model,
input_blob="input",
seq_lengths="seq_lengths",
initial_states=init_blobs,
dim_in=input_dim,
dim_out=[hidden_dim] * num_layers,
drop_states=True,
forward_only=forward_only,
return_last_layer_only=True,
)
loss = model.AveragedLoss(
model.SquaredL2Distance([output, "target"], "dist"),
"loss"
)
# Add gradient ops
if not forward_only:
model.AddGradientOperators([loss])
# init
for init_blob in init_blobs:
ws.FeedBlob(init_blob, np.zeros(
[1, batch_size, hidden_dim], dtype=np.float32
))
ws.RunNetOnce(model.param_init_net)
# Run with executor
self.enable_rnn_executor(model.net, 1, forward_only)
np.random.seed(10022015)
input_shape = [T, batch_size, input_dim]
ws.FeedBlob(
"input",
np.random.rand(*input_shape).astype(np.float32)
)
ws.FeedBlob(
"target",
np.random.rand(
T,
batch_size,
hidden_dim
).astype(np.float32)
)
ws.CreateNet(model.net, overwrite=True)
time_ob = model.net.AddObserver("TimeObserver")
run_cnt_ob = model.net.AddObserver("RunCountObserver")
ws.RunNet(model.net)
avg_time[j] = time_ob.average_time()
run_cnt[j] = int(''.join(x for x in run_cnt_ob.debug_info() if x.isdigit()))
model.net.RemoveObserver(time_ob)
model.net.RemoveObserver(run_cnt_ob)
print(avg_time)
print(run_cnt)
self.assertTrue(run_cnt[1] > run_cnt[0] and run_cnt[2] > run_cnt[1])
self.assertEqual(run_cnt[1] - run_cnt[0], run_cnt[2] - run_cnt[1])
def enable_rnn_executor(self, net, value, forward_only):
num_found = 0
for op in net.Proto().op:
if op.type.startswith("RecurrentNetwork"):
for arg in op.arg:
if arg.name == 'enable_rnn_executor':
arg.i = value
num_found += 1
# This sanity check is so that if someone changes the
# enable_rnn_executor parameter name, the test will
# start failing as this function will become defective.
self.assertEqual(1 if forward_only else 2, num_found)
|