File: backend.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (967 lines) | stat: -rw-r--r-- 41,575 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
## @package onnx
# Module caffe2.python.onnx.backend

"""Backend for running ONNX on Caffe2

To run this, you will need to have Caffe2 installed as well.
"""
import collections
import sys
import zipfile
import itertools

# When onnx is built against a version of protobuf that is older than
# that which is vendored with caffe2, onnx will crash if caffe2's
# vendored protobuf is loaded first. We can work around this by
# importing onnx first, which will cause it to go out and pick up the
# system protobuf.
import onnx.backend
from caffe2.python import core, workspace, rnn_cell, gru_cell
from caffe2.python.model_helper import ModelHelper
from caffe2.proto import caffe2_pb2
import caffe2.python.utils
import numpy as np
import onnx
from onnx import TensorProto
import onnx.numpy_helper
import onnx.defs
import onnx.shape_inference
import onnx.utils
from onnx.backend.base import Backend, Device, DeviceType, namedtupledict

from caffe2.python.onnx.workspace import Workspace
from caffe2.python.onnx.backend_rep import Caffe2Rep

import caffe2.python._import_c_extension as C

import warnings

def force_unicode(s):
    try:
        return s.decode('utf-8')
    except AttributeError:
        return s

def get_device_option(device):
    m = {DeviceType.CPU: caffe2_pb2.CPU,
         DeviceType.CUDA: workspace.GpuDeviceType}
    return core.DeviceOption(m[device.type], device.device_id)


class OnnxAttributes(dict):
    """
    This is a more convenient way to work with ONNX/Caffe2 attributes
    that is not the protobuf representation.
    """
    @staticmethod
    def from_onnx(args):
        d = OnnxAttributes()
        for arg in args:
            d[arg.name] = convertAttributeProto(arg)
        return d

    def caffe2(self, kmap=lambda k: k):
        for k, v in self.items():
            if kmap(k) != '':
                yield caffe2.python.utils.MakeArgument(kmap(k), v)

# TODO: Move this into ONNX main library
def convertAttributeProto(onnx_arg):
    """
    Convert an ONNX AttributeProto into an appropriate Python object
    for the type.

    NB: Tensor attribute gets returned as the straight proto.
    """
    if onnx_arg.HasField('f'):
        return onnx_arg.f
    elif onnx_arg.HasField('i'):
        return onnx_arg.i
    elif onnx_arg.HasField('s'):
        return onnx_arg.s
    elif onnx_arg.HasField('t'):
        return onnx_arg.t  # this is a proto!
    elif onnx_arg.HasField('g'):
        return Caffe2Backend._graph_to_net(onnx_arg.g, Caffe2Backend._known_opset_version)
    elif len(onnx_arg.floats):
        return list(onnx_arg.floats)
    elif len(onnx_arg.ints):
        return list(onnx_arg.ints)
    elif len(onnx_arg.strings):
        return list(onnx_arg.strings)
    elif len(onnx_arg.graphs):
        retval = []
        # TODO: this doesn't work with RNN ops
        for g in onnx_arg.graphs:
            retval.append(Caffe2Backend._graph_to_net(g, Caffe2Backend._known_opset_version))
        return retval
    else:
        raise ValueError("Unsupported ONNX attribute: {}".format(onnx_arg))


# TODO: Move this into ONNX main library
class OnnxNode(object):
    """
    Reimplementation of NodeProto from ONNX, but in a form
    more convenient to work with from Python.

    We may temporarily edit these nodes to get them into Caffe2 form,
    before actually translating into the Caffe2 protobuf, since this
    is easier than decomposing everything, and putting it back together
    when we're ready.
    """
    def __init__(self, node):
        self.name = str(node.name)
        self.op_type = str(node.op_type)
        self.attrs = OnnxAttributes.from_onnx(node.attribute)
        self.inputs = list(node.input)
        self.outputs = list(node.output)


Caffe2Ops = collections.namedtuple('Caffe2Ops', ['ops', 'init_ops', 'interface_blobs'])


class Caffe2Backend(Backend):

    # The greatest version of the ONNX operator set which we are aware of.
    # Models whose version is larger than this will cause us to emit a warning
    # that we are attempting to translate on a "best effort" basis.
    #
    # If you increase this, make SURE you cross-reference all BC-breaking
    # changes from one version to the next, and any that you did not
    # implement, mark as broken in _broken_operators
    _known_opset_version = 9

    # This dictionary will record operators which are KNOWN to be
    # broken, so we give a good error message rather than do something
    # bogus and then fail.
    _broken_operators = {
        # 'BrokenOp': version_it_was_broken_in
    }

    # Operators that are different between Caffe2 and
    # ONNX but only in their name.
    # In most cases, this should be empty - as the effort of ONNX is
    # to unify the operator definitions.
    _renamed_operators = {
        'GlobalMaxPool':         'MaxPool',
        'GlobalAveragePool':     'AveragePool',
        'Pad':                   'PadImage',
        'Neg':                   'Negative',
        'BatchNormalization':    'SpatialBN',
        'InstanceNormalization': 'InstanceNorm',
        'MatMul':                'BatchMatMul',
        'Upsample':              'ResizeNearest',
        'Identity':              'Copy',
        'InstanceNormalization': 'InstanceNorm',
        'Equal':                 'EQ',
        'Less':                  'LT',
        'Greater':               'GT',
        'Unsqueeze':             'ExpandDims',
        'Loop':                  'ONNXWhile',
        'Tile':                  'NumpyTile',
        'RandomNormal':          'GaussianFill',
        'RandomUniform':         'UniformFill',
    }

    _global_renamed_attrs = {'kernel_shape': 'kernels'}
    _per_op_renamed_attrs = {
        'Squeeze':              {'axes': 'dims'},
        'Unsqueeze':            {'axes': 'dims'},
        'Transpose':            {'perm': 'axes'},
        'Upsample':             {'mode': '',
                                 'scales': ''},
        'ConvTranspose':        {'output_padding': 'adjs'},
        'Selu':                 {'gamma': 'scale'},
        'If':                   {'then_branch': 'then_net',
                                 'else_branch': 'else_net'},
        'RandomUniform':        {'low': 'min',
                                 'high': 'max'}
    }

    # operators whose behavior is different beyond renaming
    # the value is an attribute of this class that is a
    # function from ToffeIR node_def to caffe2 op_def
    _special_operators = {
        'LSTM': '_create_rnn_variant',
        'GRU': '_create_rnn_variant',
        'RNN': '_create_rnn_variant',
        'Loop': '_create_loop',
        'If': '_create_if',
        'Upsample': '_create_upsample',
        'RandomNormal': '_create_gaussian_fill'
    }

    # Dummy name generator
    _dummy_name = C.DummyName()

    @classmethod
    def dummy_name(cls):
        return cls._dummy_name.new_dummy_name()

    # NB: By default, you will use the LATEST definition of the operator,
    # so this interface MAY make BC-breaking changes.  Specify an
    # opset_version if you don't want this to version.
    @classmethod
    def run_node(cls, node, inputs, device='CPU', opset_version=_known_opset_version, outputs_info=None):
        super(Caffe2Backend, cls).run_node(node, inputs, device=device,
                                           outputs_info=outputs_info, opset_version=opset_version)

        value_infos = []
        device_option = get_device_option(Device(device))
        ws = Workspace()
        with core.DeviceScope(device_option):  # temporary!
            if isinstance(inputs, dict):
                for key, value in inputs.items():
                    ws.FeedBlob(key, value)
                    value_infos.append(onnx.helper.make_tensor_value_info(
                        name=key,
                        elem_type=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[value.dtype],
                        shape=value.shape).SerializeToString())
            else:
                assert len(node.input) == len(inputs), "{}: expected {} but got {}".format(
                    node.op_type, len(node.input), len(inputs))
                for key, value in zip(node.input, inputs):
                    ws.FeedBlob(key, value)
                    value_infos.append(onnx.helper.make_tensor_value_info(
                        name=key,
                        elem_type=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[value.dtype],
                        shape=value.shape).SerializeToString())

            ops = []
            cbackend = C.Caffe2Backend(cls._dummy_name)
            ops_str = cbackend.convert_node(node.SerializeToString(), value_infos, opset_version)
            for s in ops_str[0] + ops_str[1]:
                op = caffe2_pb2.OperatorDef()
                op.ParseFromString(s)
                op.device_option.CopyFrom(device_option)
                ops.append(op)
            ws.RunOperatorsOnce(ops)
            output_values = [ws.FetchBlob(name) for name in node.output]
            return namedtupledict('Outputs', node.output)(*output_values)

    @classmethod
    def _create_tensor_filling_op(cls, onnx_tensor, name=None):
        """
        Given an Onnx TensorProto, translate it into a Caffe2 operator
        which produces the given tensor filling op.
        """
        assert name or onnx_tensor.name
        name = name or onnx_tensor.name

        c2_op = caffe2_pb2.OperatorDef()

        c2_values = c2_op.arg.add()
        c2_values.name = "values"

        def tensor2list(onnx_tensor):
            # Use the onnx.numpy_helper because the data may be raw
            return onnx.numpy_helper.to_array(onnx_tensor).flatten().tolist()

        if onnx_tensor.data_type in [TensorProto.FLOAT]:
            c2_op.type = 'GivenTensorFill'
            c2_values.floats.extend(tensor2list(onnx_tensor))
        elif onnx_tensor.data_type in [TensorProto.DOUBLE]:
            c2_op.type = 'GivenTensorDoubleFill'
            c2_values.floats.extend(tensor2list(onnx_tensor))
        elif onnx_tensor.data_type in [TensorProto.INT64,
                                       TensorProto.UINT32]:
            c2_op.type = 'GivenTensorInt64Fill'
            c2_values.ints.extend(tensor2list(onnx_tensor))
        elif onnx_tensor.data_type in [TensorProto.UINT8,
                                       TensorProto.INT8,
                                       TensorProto.UINT16,
                                       TensorProto.INT16,
                                       TensorProto.INT32]:
            c2_op.type = 'GivenTensorIntFill'
            c2_values.ints.extend(tensor2list(onnx_tensor))
        elif onnx_tensor.data_type == TensorProto.BOOL:
            c2_op.type = 'GivenTensorBoolFill'
            c2_values.ints.extend(tensor2list(onnx_tensor))
        elif onnx_tensor.data_type == TensorProto.STRING:
            c2_op.type = 'GivenTensorStringFill'
            c2_values.strings.extend(onnx_tensor.string_data)
        else:
            raise RuntimeError(
                "unrecognized tensor type {}".format(onnx_tensor.data_type))

        c2_shape = c2_op.arg.add()
        c2_shape.name = "shape"
        c2_shape.ints.extend(onnx_tensor.dims)

        c2_op.output.append(name)

        return c2_op

    @classmethod
    def _rnn_reform_weights(cls, reforms, name, hidden_size, init_net, gates, reorder_indices):
        for name_from, name_to, do_concat, extra_dims in reforms:
            gate_blobs = ['%s/%s_%s' % (name, prefix, name_to) for prefix in gates]
            for i, x in enumerate(gate_blobs):
                dim0 = i * hidden_size, (i+1) * hidden_size
                starts, ends = zip(dim0, *extra_dims)
                init_net.Slice(name_from, x, starts=starts, ends=ends)
            if do_concat:
                reordered_gate_blobs = [gate_blobs[i] for i in reorder_indices]
                init_net.Concat(reordered_gate_blobs, ['%s/%s' % (name, name_to), cls.dummy_name()], axis=0)

    @classmethod
    def _make_rnn_direction(cls, input_blob, B, W, R, initial_states_and_names, sequence_lens,
                            pred_mh, init_net,
                            input_size, hidden_size, num_gates, direction_offset,
                            Bi, Br, W_, R_,
                            reform, make_cell, keep_outputs):
        name = cls.dummy_name()

        # input and recurrence biases are squashed together in onnx
        # but not in caffe2
        gates_hidden_size = num_gates * hidden_size
        bias_offset = 2 * direction_offset * gates_hidden_size
        weight_offset = direction_offset * gates_hidden_size
        Bi = init_net.Slice(B, name + Bi,
                            starts=[bias_offset + 0 * gates_hidden_size],
                            ends  =[bias_offset + 1 * gates_hidden_size])
        Br = init_net.Slice(B, name + Br,
                            starts=[bias_offset + 1 * gates_hidden_size],
                            ends  =[bias_offset + 2 * gates_hidden_size])
        W_ = init_net.Slice(W, name + W_,
                            starts=[weight_offset + 0 * gates_hidden_size, 0],
                            ends  =[weight_offset + 1 * gates_hidden_size,-1])
        R_ = init_net.Slice(R, name + R_,
                            starts=[weight_offset + 0 * gates_hidden_size, 0],
                            ends  =[weight_offset + 1 * gates_hidden_size,-1])

        initial_states_sliced = []
        for initial_state, name_suffix in initial_states_and_names:
            initial_states_sliced.append(
                pred_mh.net.Slice(initial_state, name + name_suffix,
                                  starts=[direction_offset + 0, 0, 0],
                                  ends  =[direction_offset + 1,-1,-1]))

        if direction_offset == 1:
            if sequence_lens is not None:
                seq_lens_for_reverse = sequence_lens
            else:
                input_shape = pred_mh.net.Shape(input_blob, name + '/input_shape')
                batch_size = pred_mh.net.Slice(input_shape, name + '/batch_size_slice', starts=[1], ends=[2])
                seq_len = pred_mh.net.Slice(input_shape, name + '/seq_len_slice', starts=[0], ends=[1])
                dummy_sequence_lens = pred_mh.net.Tile([seq_len, batch_size], name + '/dummy_sequence_lens', axis=0)
                pred_mh.net.Reshape(dummy_sequence_lens, [dummy_sequence_lens, cls.dummy_name()], shape=[-1])
                seq_lens_for_reverse = pred_mh.net.Cast(dummy_sequence_lens, name + '/seq_lens_for_reverse', to=core.DataType.INT32)
        reform(Bi, Br, W_, R_, name, hidden_size, init_net)

        if direction_offset == 1:
            input = pred_mh.net.ReversePackedSegs(
                [input_blob, seq_lens_for_reverse], name + "/input-reversed")
        else:
            input = input_blob

        outputs = keep_outputs(list(make_cell(
            pred_mh,
            input,
            sequence_lens,
            initial_states_sliced,
            input_size,
            hidden_size,
            name,
            drop_states=False,
            forward_only=True,
        )))

        if direction_offset == 1:
            outputs[0] = pred_mh.net.ReversePackedSegs(
                [outputs[0], seq_lens_for_reverse], name + "/output-reversed")

        return outputs

    @classmethod
    def _create_rnn_variant(cls, init_model, pred_model, n, opset_version):
        assert init_model is not None, "cannot convert RNNs without access to the full model"
        assert pred_model is not None, "cannot convert RNNs without access to the full model"

        attrs = dict(n.attrs) # make a copy, which is safe to mutate
        hidden_size = attrs.pop('hidden_size')
        direction = force_unicode(attrs.pop('direction', 'forward'))

        if n.op_type == 'RNN':
            activation = force_unicode(attrs.pop('activations', ('tanh',))[0].lower())
        elif n.op_type == 'GRU':
            linear_before_reset = attrs.pop('linear_before_reset', 0)

        assert not attrs, "unsupported RNN attributes: " + str(attrs.keys())
        assert direction in ['forward', 'bidirectional'], "unsupported backwards RNN/GRU/LSTM"

        if n.op_type in ['RNN', 'GRU']:
            input_blob, W, R, B, sequence_lens, initial_h = n.inputs
        elif n.op_type == 'LSTM':
            input_blob, W, R, B, sequence_lens, initial_h, initial_c = n.inputs

        if sequence_lens == "":
            sequence_lens = None

        for x in itertools.chain(init_model.graph.input,
                                 init_model.graph.value_info,
                                 pred_model.graph.input,
                                 pred_model.graph.value_info):
            if x.name == W:
                input_size = x.type.tensor_type.shape.dim[2].dim_value
                break
        else:
            raise RuntimeError("best-effort shape inference for RNN/GRU/LSTM failed")

        pred_mh = ModelHelper()
        init_net = core.Net("init-net")

        init_net.Reshape(W, [W, cls.dummy_name()], shape=[1,-1,0])
        init_net.Squeeze(W, W, dims=[0])
        init_net.Reshape(R, [R, cls.dummy_name()], shape=[1,-1,0])
        init_net.Squeeze(R, R, dims=[0])
        init_net.Reshape(B, [B, cls.dummy_name()], shape=[1,-1])
        init_net.Squeeze(B, B, dims=[0])

        if n.op_type == 'RNN':
            def reform(*args):
                pass

            def make_cell(*args, **kwargs):
                return rnn_cell.BasicRNN(*args, activation=activation, **kwargs)

            def make_rnn(direction_offset):
                return cls._make_rnn_direction(
                    input_blob, B, W, R, [(initial_h, '/initial_h')], sequence_lens,
                    pred_mh, init_net, input_size, hidden_size, 1, direction_offset,
                    "/i2h_b", "/gates_t_b", "/i2h_w", "/gates_t_w",
                    reform, make_cell, lambda x: x)

        elif n.op_type == 'GRU':
            def reform(Bi, Br, W_, R_, name, hidden_size, init_net):
                # caffe2 has a different order from onnx. We need to rearrange
                #  z r h  -> r z h
                reforms = ((W_, 'i2h_w',    True,  [(0,-1)]),
                           (R_, 'gate_t_w', False, [(0,-1)]),
                           (Bi, 'i2h_b',    True,  []),
                           (Br, 'gate_t_b', False, []))
                cls._rnn_reform_weights(reforms, name, hidden_size, init_net,
                                        ['update', 'reset', 'output'], [1, 0, 2])

            def make_cell(*args, **kwargs):
                return gru_cell.GRU(*args, linear_before_reset=linear_before_reset, **kwargs)

            def make_rnn(direction_offset):
                return cls._make_rnn_direction(
                    input_blob, B, W, R, [(initial_h, '/initial_h')], sequence_lens,
                    pred_mh, init_net, input_size, hidden_size, 3, direction_offset,
                    "_bias_i2h", "_bias_gates", "/i2h_w_pre", "/gates_t_w_pre",
                    reform, make_cell, lambda x: x)

        elif n.op_type == 'LSTM':
            def reform(Bi, Br, W_, R_, name, hidden_size, init_net):
                # caffe2 has a different order from onnx. We need to rearrange
                #   i o f c -> i f o c
                reforms = ((W_, 'i2h_w',     True, [(0, -1)]),
                           (R_, 'gates_t_w', True, [(0, -1)]),
                           (Bi, 'i2h_b'    , True, []),
                           (Br, 'gates_t_b', True, []))
                cls._rnn_reform_weights(reforms, name, hidden_size, init_net,
                                        ['input', 'output', 'forget', 'cell'], [0, 2, 1, 3])

            def make_cell(*args, **kwargs):
                return rnn_cell.LSTM(*args, **kwargs)

            def make_rnn(direction_offset):
                return cls._make_rnn_direction(
                    input_blob, B, W, R, [(initial_h, '/initial_h'), (initial_c, '/initial_c')], sequence_lens,
                    pred_mh, init_net, input_size, hidden_size, 4, direction_offset,
                    "/i2h_b", "/gates_t_b", "/i2h_w", "/gates_t_w",
                    reform, make_cell, lambda x: [x[0], x[1], x[3]])

        if direction == 'forward':
            outputs = make_rnn(0)

            # in the forward case, storage is shared between the
            # last outputs. We need to decouple them so that the
            # VariableLengthSequencePadding only mutates
            # n.outputs[0]
            for i in range(1, len(outputs)):
                pred_mh.net.Copy(outputs[i], n.outputs[i])

            if sequence_lens is not None:
                pred_mh.net.VariableLengthSequencePadding(
                    [outputs[0], sequence_lens], [outputs[0]])
            pred_mh.net.ExpandDims([outputs[0]], [n.outputs[0]], dims=[1])
        elif direction == 'bidirectional':
            outputs_f = make_rnn(0)
            outputs_b = make_rnn(1)

            concatted_output, _ = pred_mh.net.Concat(
                [outputs_f[0], outputs_b[0]], [cls.dummy_name(), cls.dummy_name()], axis=2)
            if sequence_lens is not None:
                pred_mh.net.VariableLengthSequencePadding(
                    [concatted_output, sequence_lens], [concatted_output])
            reshaped_output, _ = pred_mh.net.Reshape(concatted_output, [cls.dummy_name(), cls.dummy_name()], shape=[0,0,-1,2])
            pred_mh.net.Transpose(reshaped_output, n.outputs[0], axes=[0,2,1,3])
            for i in range(1, len(n.outputs)):
                pred_mh.net.Concat([outputs_f[i], outputs_b[i]],
                                   [n.outputs[i], cls.dummy_name()], axis=0)

        # We want to decide whether to put all of our weight-reshaping
        # operators in the init net or the predict net. We can put
        # them in the init net iff the inputs to those operators are
        # already available, either as graph initializers, or as the
        # output of other operators in the init net. The latter case
        # occurs, for example, when exporting from pytorch to onnx.
        # In most production use, we expect has_initializers to be
        # true.
        initializers = {i.name for i in init_model.graph.initializer}
        outputs = {output for node in init_model.graph.node for output in node.output}
        has_initializers = all(x in initializers or x in outputs for x in (W, R, B))

        pred_ops = []
        init_ops = []
        (init_ops if has_initializers else pred_ops).extend(init_net.Proto().op)
        pred_ops.extend(pred_mh.Proto().op)

        return Caffe2Ops(pred_ops, init_ops, list(pred_mh.Proto().external_input))

    @classmethod
    def _create_control_op(cls, init_model, pred_model, n, opset_version):
        control_inputs = []
        if '__control_inputs' in n.attrs:
            control_inputs.extend(n.attrs['__control_inputs'])
        node = cls._common_onnx_node_to_caffe2_op(init_model, pred_model, n, opset_version)
        node.control_input.extend(control_inputs)
        return Caffe2Ops([node], [], [])

    @classmethod
    def _remove_ssa(cls, net, remap_dict):
        for op in net.op:
            for i, name in enumerate(op.output):
                if name in remap_dict:
                    op.output[i] = remap_dict[name]
        for i, out in enumerate(net.external_output):
            if out in remap_dict:
                net.external_output[i] = remap_dict[out]

    @classmethod
    def _create_if(cls, init_model, pred_model, n, opset_version):
        ops = cls._create_control_op(init_model, pred_model, n, opset_version)
        assert ops[0][0].type == 'If'
        if_op = ops[0][0]
        then_net = else_net = None
        control_inputs = []
        for arg in if_op.arg:
            if arg.name == 'then_net':
                then_net = arg.n
            if arg.name == 'else_net':
                else_net = arg.n
            if arg.name == '__control_inputs':
                control_inputs = arg.strings

        assert then_net and else_net
        then_net_outs = then_net.external_output
        else_net_outs = else_net.external_output
        op_outputs = if_op.output
        assert len(then_net_outs) == len(else_net_outs)
        assert len(else_net_outs) == len(op_outputs)

        for arg in if_op.arg:
            if arg.name == 'then_net':
                arg.n.external_input.extend(control_inputs)
            if arg.name == 'else_net':
                arg.n.external_input.extend(control_inputs)

        return ops

    @classmethod
    def _create_loop(cls, init_model, pred_model, n, opset_version):
        ops = cls._create_control_op(init_model, pred_model, n, opset_version)
        assert ops[0][0].type == 'ONNXWhile'
        while_op = ops[0][0]
        while_op.arg.extend([caffe2.python.utils.MakeArgument('has_trip_count', True)])
        while_op.arg.extend([caffe2.python.utils.MakeArgument('has_cond', True)])
        while_op.arg.extend([caffe2.python.utils.MakeArgument('disable_scopes', True)])
        control_inputs = []
        for arg in while_op.arg:
            if arg.name == '__control_inputs':
                control_inputs = arg.strings
        num_loop_carried_deps = 0
        for arg in while_op.arg:
            if arg.name == 'body':
                num_loop_carried_deps = len(arg.n.external_input) - 2
                arg.n.external_input.extend(control_inputs)
        while_op.arg.extend([
            caffe2.python.utils.MakeArgument('num_loop_carried_deps',
                                             num_loop_carried_deps)
        ])

        return ops

    @classmethod
    def _substitute_raw_value(cls, tp, raw_values_dict):
        if tp.HasField('raw_data') and tp.raw_data == bytes(b'__EXTERNAL'):
            if tp.name not in raw_values_dict:
                raise RuntimeError('TensorProto for value {} referenced raw data but it was not found!'.format(tp.name))
            else:
                tp.raw_data = raw_values_dict[tp.name]

    @classmethod
    def _visit_and_substitute_raw_values(cls, nodes, raw_values_dict):
        for node in nodes:
            for attr in node.attribute:
                if attr.HasField('t'):
                    cls._substitute_raw_value(attr.t, raw_values_dict)
                for t in attr.tensors:
                    cls._substitute_raw_value(t, raw_values_dict)
                if attr.HasField('g'):
                    cls._visit_and_substitute_raw_values(attr.g.node, raw_values_dict)
                for g in attr.graphs:
                    cls._visit_and_substitute_raw_values(g.node, raw_values_dict)

    @classmethod
    def _external_value_resolution_pass(cls, model, raw_values_dict):
        for init in model.graph.initializer:
            cls._substitute_raw_value(init, raw_values_dict)

        cls._visit_and_substitute_raw_values(model.graph.node, raw_values_dict)


    @classmethod
    def _direct_initialize_parameters(cls, initializer, ws, device_option):
        for tp in initializer:
            ws.FeedBlob(tp.name, onnx.numpy_helper.to_array(tp), device_option)

    @classmethod
    def _direct_initialize_inputs(cls, inputs, initialized, ws, device_option):
        for value_info in inputs:
            if value_info.name in initialized:
                continue
            shape = list(d.dim_value for d in value_info.type.tensor_type.shape.dim)
            ws.FeedBlob(
                value_info.name,
                np.ones(shape, dtype=onnx.mapping.TENSOR_TYPE_TO_NP_TYPE[value_info.type.tensor_type.elem_type]),
                device_option)

    @staticmethod
    def optimize_onnx(input, init=False, predict=False):
        passes =  ['fuse_consecutive_transposes',
                   'eliminate_nop_transpose',
                   'fuse_transpose_into_gemm',
                   'lift_lexical_references']
        if init:
            passes.append('split_init')
        if predict:
            passes.append('split_predict')
        try:
            out = onnx.optimizer.optimize(input, passes)
        except AttributeError:
            warnings.warn("OptimizerWarning: optimizer module not found in ONNX version {}".format(onnx.__version__))
            # ONNX does no ship onnx.optimizer since version 1.9+
            import onnxoptimizer
            out = onnxoptimizer.optimize(input, passes)
        return out

    @classmethod
    def prepare_zip_archive(cls, file, device='CPU', **kwargs):
        with zipfile.ZipFile(file, mode='r') as z:
            with z.open('__MODEL_PROTO', 'r') as f:
                model = onnx.load(f);
            blob_names = set(z.namelist()) - set('__MODEL_PROTO')
            # TODO: make this more efficient
            raw_values_dict = {}
            for name in blob_names:
                with z.open(name, 'r') as blob_file:
                    raw_values_dict[name] = blob_file.read()

        return cls.prepare(model, device, raw_values_dict=raw_values_dict, **kwargs)

    @classmethod
    def prepare(cls, model, device='CPU', raw_values_dict=None, **kwargs):
        '''
        For Onnx Caffe2Backend, we require that init_graph don't initialize the actual input of the predict_graph,

        for example, if "img" is the input blob for the predict_net, we require that in init_graph and in
        initializer of the predict_graph, "img" is not initalized. We don't have a check for this, since
        there is no way we can know which blob is the input of the predict_graph.
        '''
        if not kwargs.pop('no_check_UNSAFE', False):
            super(Caffe2Backend, cls).prepare(model, device, **kwargs)
        opset_version = None
        for imp in model.opset_import:
            if not imp.HasField("domain") or imp.domain == "":
                opset_version = imp.version
                if imp.version > cls._known_opset_version:
                    warnings.warn("This version of onnx-caffe2 targets ONNX operator set version {}, but the model we are trying to import uses version {}.  We will try to import it anyway, but if the model uses operators which had BC-breaking changes in the intervening versions, import will fail.".format(cls._known_opset_version, imp.version))
            else:
                warnings.warn("Unrecognized operator set {}".format(imp.domain))
        if opset_version is None:
            if model.ir_version >= 0x00000003:
                raise RuntimeError("Model with IR version >= 3 did not specify ONNX operator set version (onnx-caffe2 requires it)")
            else:
                opset_version = 1

        # Prior to onnx version update to onnx-1.8.0, errors caused by failures in
        # in the onnx shape inference call were being supressed. Hence a try-catch block
        # is added around the infer_shapes call to avoid these failures and preserve status
        try:
            model = onnx.shape_inference.infer_shapes(model)
        except RuntimeError:
            warnings.warn("ShapeInferenceWarning: Inferred shape and existing shape differ in rank")

        ws = Workspace()
        device_option = get_device_option(Device(device))

        init_net, predict_net = cls._onnx_model_to_caffe2_net(model, device, opset_version, False)

        if raw_values_dict:
            cls._external_value_resolution_pass(model, raw_values_dict)

        # Directly load initializer data into blobs in workspace
        cls._direct_initialize_parameters(
            model.graph.initializer,
            ws,
            device_option,
        )

        initialized = {init.name for init in model.graph.initializer}

        cls._direct_initialize_inputs(
            model.graph.input,
            initialized,
            ws,
            device_option,
        )

        uninitialized = [value_info.name for value_info in model.graph.input if value_info.name not in initialized]

        retval = Caffe2Rep(init_net, predict_net, ws, uninitialized)
        return retval


    @classmethod
    # TODO: This method needs a refactor for clarity
    def _onnx_node_to_caffe2_op(cls, init_model, pred_model, node_def, opset_version):
        cbackend = C.Caffe2Backend(cls._dummy_name)
        if cbackend.support_onnx_import(node_def.op_type):

            # extract value infos from pred model (value infos of
            # node's inputs that are in init model should be all
            # available in pred model)
            value_infos = []
            for name in node_def.input:
                if pred_model is not None:
                    for vi in itertools.chain(pred_model.graph.input,
                                              pred_model.graph.output,
                                              pred_model.graph.value_info):
                        if vi.name == name:
                            value_infos.append(vi.SerializeToString())

            op_strs = cbackend.convert_node(node_def.SerializeToString(), value_infos, opset_version)
            init_ops = []
            for s in op_strs[0]:
                op = caffe2_pb2.OperatorDef()
                op.ParseFromString(s)
                init_ops.append(op)
            ops = []
            for s in op_strs[1]:
                op = caffe2_pb2.OperatorDef()
                op.ParseFromString(s)
                ops.append(op)
            return Caffe2Ops(ops, init_ops, [])

        if node_def.op_type in cls._special_operators:
            translator = getattr(cls, cls._special_operators[node_def.op_type])
        else:
            translator = cls._common_onnx_node_to_caffe2_op
        ops = translator(init_model, pred_model, OnnxNode(node_def), opset_version)
        if isinstance(ops, Caffe2Ops):
            return ops
        if not isinstance(ops, collections.abc.Iterable):
            ops = [ops]
        return Caffe2Ops(ops, [], [])

    _broadcast_operators = {
        'Add',
        'Sub',
    }

    @classmethod
    def _common_onnx_node_to_caffe2_op(cls, init_model, pred_model, onnx_node, opset_version):
        """
        This translator performs the basic translation of ONNX nodes into
        Caffe2 operators.  Besides doing a straightforward marshalling from
        one format to another, it also does these extra things:

          - Renames operators based on '_renamed_operators'
          - Renames attributes based on '_global_renamed_attrs' and
            '_per_op_renamed_attrs'

        If you're writing a custom translator, consider calling this first,
        and then fixing things up further.
        """
        c2_op = caffe2_pb2.OperatorDef()

        c2_op.input.extend(onnx_node.inputs)
        c2_op.output.extend(onnx_node.outputs)
        c2_op.name = onnx_node.name


        onnx_op_type = onnx_node.op_type
        broken_version = cls._broken_operators.get(onnx_op_type, float('Inf'))
        if broken_version <= opset_version:
            raise ValueError(
                "Don't know how to translate op {} in ONNX operator set v{} (I only support prior to v{})".format(onnx_op_type, opset_version, broken_version))
        c2_op.type = cls._renamed_operators.get(onnx_op_type, onnx_op_type)
        if not core.IsOperator(c2_op.type):
            raise ValueError(
                "Don't know how to translate op {}".format(onnx_op_type))

        def kmap(k):
            if (onnx_op_type in cls._per_op_renamed_attrs and
                    k in cls._per_op_renamed_attrs[onnx_op_type]):
                return cls._per_op_renamed_attrs[onnx_op_type][k]
            if k in cls._global_renamed_attrs:
                return cls._global_renamed_attrs[k]
            return k
        c2_op.arg.extend(onnx_node.attrs.caffe2(kmap=kmap))

        if opset_version < 7:
            # onnx opset 7 and newest caffe2 have adopted full onnx broadcast semantics
            # so we don't need this hack anymore
            if c2_op.type in cls._broadcast_operators:
                already_broadcast = False
                for arg in c2_op.arg:
                    if arg.name == 'broadcast':
                        already_broadcast = True
                if not already_broadcast:
                    c2_op.arg.extend([caffe2.python.utils.MakeArgument('broadcast', 1)])

        return c2_op

    @staticmethod
    def _all_names_in_graph(graph):
        if graph is None:
            return set()

        names = set()
        names.update(value_info.name for value_info in graph.input)
        names.update(value_info.name for value_info in graph.output)
        for node in graph.node:
            names.update(node.input)
            names.update(node.output)
        return names

    @classmethod
    def _graph_to_net(cls, onnx_graph, opset_version):
        net = caffe2_pb2.NetDef()
        for node in onnx_graph.node:
            try:
                c2ops = cls._onnx_node_to_caffe2_op(
                    None, None, node, opset_version)
            except Exception as e:
                print('ONNX FATAL:', e)
                continue
            net.op.extend(c2ops.init_ops)
            net.op.extend(c2ops.ops)
            net.external_input.extend(c2ops.interface_blobs)
        net.external_output.extend(
            value_info.name for value_info in onnx_graph.output)
        net.external_input.extend(
            value_info.name for value_info in onnx_graph.input)
        return net

    @classmethod
    def _onnx_model_to_caffe2_net(cls, onnx_model, device, opset_version, include_initializers):
        device_option = get_device_option(Device(device))

        # Prior to onnx version update to onnx-1.8.0, errors caused by failures in
        # in the onnx shape inference call were being supressed. Hence a try-catch block
        # is added around the infer_shapes call to avoid these failures and preserve status
        try:
            onnx_model = onnx.utils.polish_model(onnx_model)
        except RuntimeError:
            warnings.warn("ShapeInferenceWarning: Inferred shape and existing shape differ in rank")
        except AttributeError:
            warnings.warn("ShapeInferenceWarning: utils module not found in ONNX version {}".format(onnx.__version__))

        # Optimizer module has been removed in ONNX-1.9 or later, warn caller if that is the case
        try:
            init_model = cls.optimize_onnx(onnx_model, init=True)
            pred_model = cls.optimize_onnx(onnx_model, predict=True)
        except ModuleNotFoundError:
            warnings.warn("OptimizerWarning: onnxoptimizer module not installed. "
                          "init_model and pred_model models will not be splitted, which can cause a runtime error")
            init_model = onnx_model
            pred_model = onnx_model

        init_net = caffe2_pb2.NetDef()
        pred_net = caffe2_pb2.NetDef()

        init_net.name = onnx_model.graph.name + '_init'
        pred_net.name = onnx_model.graph.name + '_predict'

        if include_initializers:
            init_net.op.extend(cls._create_tensor_filling_op(tp) for tp in onnx_model.graph.initializer)

        cls._dummy_name.reset(cls._all_names_in_graph(init_model.graph) | cls._all_names_in_graph(pred_model.graph))

        errors = []
        for net, model in ( (init_net, init_model), (pred_net, pred_model) ):
            net.device_option.CopyFrom(device_option)
            for node in model.graph.node:
                try:
                    c2ops = cls._onnx_node_to_caffe2_op(
                        init_model, pred_model, node, opset_version)
                except Exception as e:
                    msg = 'Error while processing node: {}. Exception: {}'.format(node, e)
                    errors.append(msg)
                    print('ONNX FATAL:', msg, file=sys.stderr)
                    continue
                init_net.op.extend(c2ops.init_ops)
                net.op.extend(c2ops.ops)
                net.external_input.extend(c2ops.interface_blobs)
            net.external_output.extend(
                value_info.name for value_info in model.graph.output)
            net.external_input.extend(
                value_info.name for value_info in model.graph.input)

        if len(errors) > 0:
            raise RuntimeError(
                "ONNX conversion failed, encountered {} errors:\n\n{}".format(
                    len(errors), "\n\n".join(errors)))

        return init_net, pred_net

    # wrapper for backwards compatibility
    @classmethod
    def onnx_graph_to_caffe2_net(cls, model, device="CPU", opset_version=_known_opset_version):
        return cls._onnx_model_to_caffe2_net(model, device=device, opset_version=opset_version, include_initializers=True)

    @classmethod
    def supports_device(cls, device_str):
        device = Device(device_str)
        if device.type == DeviceType.CPU:
            return True
        elif core.IsGPUDeviceType(device.type):
            return workspace.has_gpu_support
        return False

    @classmethod
    def is_compatible(cls, model, device='CPU', **kwargs):
        if hasattr(super(Caffe2Backend, cls), 'is_compatible') \
           and callable(super(Caffe2Backend, cls).is_compatible):
            if not super(Caffe2Backend, cls).is_compatible(model, device, **kwargs):
                return False
        # TODO: should have an unspported list of operators, be optimistic for now
        return True

prepare = Caffe2Backend.prepare

prepare_zip_archive = Caffe2Backend.prepare_zip_archive

run_node = Caffe2Backend.run_node

run_model = Caffe2Backend.run_model

supports_device = Caffe2Backend.supports_device  # noqa

is_compatible = Caffe2Backend.is_compatible