File: adadelta_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (199 lines) | stat: -rw-r--r-- 7,932 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199





import functools

import hypothesis
from hypothesis import given, settings, HealthCheck
import hypothesis.strategies as st
import numpy as np

from caffe2.python import core
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial


class TestAdadelta(serial.SerializedTestCase):
    @staticmethod
    def ref_adadelta(param_in,
                     mom_in,
                     mom_delta_in,
                     grad, lr,
                     epsilon,
                     decay,
                     using_fp16=False):
        param_in_f32 = param_in
        mom_in_f32 = mom_in
        mom_delta_in_f32 = mom_delta_in
        if(using_fp16):
            param_in_f32 = param_in.astype(np.float32)
            mom_in_f32 = mom_in.astype(np.float32)
            mom_delta_in_f32 = mom_delta_in.astype(np.float32)

        mom_out = decay * mom_in_f32 + (1.0 - decay) * grad * grad
        new_grad = (np.sqrt(mom_delta_in_f32 + epsilon) /
                    np.sqrt(mom_out + epsilon)) * grad
        param_out = param_in_f32 + lr * new_grad
        mom_delta_out = decay * mom_delta_in_f32 + (1.0 - decay
                                                    ) * new_grad * new_grad
        if(using_fp16):
            return (param_out.astype(np.float16), mom_out.astype(np.float16),
                    mom_delta_out.astype(np.float16))
        else:
            return (param_out.astype(np.float32), mom_out.astype(np.float32),
                    mom_delta_out.astype(np.float32))

    @given(inputs=hu.tensors(n=4),
           lr=hu.floats(min_value=0.01, max_value=0.99,
                        allow_nan=False, allow_infinity=False),
           epsilon=hu.floats(min_value=0.01, max_value=0.99,
                             allow_nan=False, allow_infinity=False),
           decay=hu.floats(min_value=0.01, max_value=0.99,
                           allow_nan=False, allow_infinity=False),
           **hu.gcs)
    @settings(deadline=10000)
    def test_adadelta(self, inputs, lr, epsilon, decay, gc, dc):
        param, moment, moment_delta, grad = inputs
        moment = np.abs(moment)
        moment_delta = np.abs(moment_delta)
        lr = np.array([lr], dtype=np.float32)

        op = core.CreateOperator(
            "Adadelta",
            ["param", "moment", "moment_delta", "grad", "lr"],
            ["param", "moment", "moment_delta"],
            epsilon=epsilon,
            decay=decay,
            device_option=gc,
        )

        self.assertReferenceChecks(
            gc, op,
            [param, moment, moment_delta, grad, lr],
            functools.partial(self.ref_adadelta, epsilon=epsilon, decay=decay))

    # Suppress filter_too_much health check.
    # Likely caused by `assume` call falling through too often.
    @settings(suppress_health_check=[HealthCheck.filter_too_much], deadline=10000)
    @given(inputs=hu.tensors(n=4),
           lr=hu.floats(min_value=0.01, max_value=0.99,
                        allow_nan=False, allow_infinity=False),
           epsilon=hu.floats(min_value=0.01, max_value=0.99,
                             allow_nan=False, allow_infinity=False),
           decay=hu.floats(min_value=0.01, max_value=0.99,
                           allow_nan=False, allow_infinity=False),
           **hu.gcs)
    def test_sparse_adadelta(self, inputs, lr, epsilon, decay, gc, dc):
        param, moment, moment_delta, grad = inputs
        moment = np.abs(moment)
        moment_delta = np.abs(moment_delta)
        lr = np.array([lr], dtype=np.float32)

        # Create an indexing array containing values that are lists of indices,
        # which index into grad
        indices = np.random.choice(np.arange(grad.shape[0]),
                                   size=np.random.randint(grad.shape[0]), replace=False)

        # Sparsify grad
        grad = grad[indices]

        op = core.CreateOperator(
            "SparseAdadelta",
            ["param", "moment", "moment_delta", "indices", "grad", "lr"],
            ["param", "moment", "moment_delta"],
            epsilon=epsilon,
            decay=decay,
            device_option=gc)

        def ref_sparse(param, moment, moment_delta, indices, grad, lr, decay,
                       ref_using_fp16):
            param_out = np.copy(param)
            moment_out = np.copy(moment)
            moment_delta_out = np.copy(moment_delta)
            for i, index in enumerate(indices):
                param_out[index], moment_out[index], moment_delta_out[
                    index] = self.ref_adadelta(param[index], moment[index],
                                               moment_delta[index], grad[i], lr,
                                               epsilon, decay, ref_using_fp16)
            return (param_out, moment_out, moment_delta_out)

        ref_using_fp16_values = [False]
        if gc == hu.gpu_do:
            ref_using_fp16_values.append(True)

        for ref_using_fp16 in ref_using_fp16_values:
            moment_i = None
            moment_delta_i = None
            param_i = None
            if(ref_using_fp16):
                moment_i = moment.astype(np.float16)
                moment_delta_i = moment_delta.astype(np.float16)
                param_i = param.astype(np.float16)
            else:
                moment_i = moment.astype(np.float32)
                moment_delta_i = moment_delta.astype(np.float32)
                param_i = param.astype(np.float32)

            self.assertReferenceChecks(gc, op, [
                param_i, moment_i, moment_delta_i, indices, grad, lr, decay,
                ref_using_fp16
            ], ref_sparse)

    @given(inputs=hu.tensors(n=3),
           lr=st.floats(min_value=0.01, max_value=0.99,
                        allow_nan=False, allow_infinity=False),
           epsilon=st.floats(min_value=0.01, max_value=0.99,
                             allow_nan=False, allow_infinity=False),
           decay=st.floats(min_value=0.01, max_value=0.99,
                             allow_nan=False, allow_infinity=False),
           **hu.gcs)
    @settings(deadline=None)
    def test_sparse_adadelta_empty(self, inputs, lr, epsilon, decay, gc, dc):
        param, moment, moment_delta = inputs
        moment = np.abs(moment)
        lr = np.array([lr], dtype=np.float32)

        grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32)
        indices = np.empty(shape=(0,), dtype=np.int64)

        hypothesis.note('indices.shape: %s' % str(indices.shape))

        op = core.CreateOperator(
            "SparseAdadelta",
            ["param", "moment", "moment_delta", "indices", "grad", "lr"],
            ["param", "moment", "moment_delta"],
            epsilon=epsilon,
            decay=decay,
            device_option=gc)

        def ref_sparse_empty(param, moment, moment_delta, indices, grad, lr, decay):
            param_out = np.copy(param)
            moment_out = np.copy(moment)
            moment_delta_out = np.copy(moment_delta)
            return (param_out, moment_out, moment_delta_out)

        ref_using_fp16_values = [False]
        if gc == hu.gpu_do:
            ref_using_fp16_values.append(True)

        for ref_using_fp16 in ref_using_fp16_values:
            moment_i = None
            moment_delta_i = None
            param_i = None
            if(ref_using_fp16):
                moment_i = moment.astype(np.float16)
                moment_delta_i = moment_delta.astype(np.float16)
                param_i = param.astype(np.float16)
            else:
                moment_i = moment.astype(np.float32)
                moment_delta_i = moment_delta.astype(np.float32)
                param_i = param.astype(np.float32)

            self.assertReferenceChecks(
                gc,
                op,
                [param_i, moment_i, moment_delta_i, indices, grad, lr, decay],
                ref_sparse_empty
            )