1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
import functools
import hypothesis
from hypothesis import given, settings, HealthCheck
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
class TestAdadelta(serial.SerializedTestCase):
@staticmethod
def ref_adadelta(param_in,
mom_in,
mom_delta_in,
grad, lr,
epsilon,
decay,
using_fp16=False):
param_in_f32 = param_in
mom_in_f32 = mom_in
mom_delta_in_f32 = mom_delta_in
if(using_fp16):
param_in_f32 = param_in.astype(np.float32)
mom_in_f32 = mom_in.astype(np.float32)
mom_delta_in_f32 = mom_delta_in.astype(np.float32)
mom_out = decay * mom_in_f32 + (1.0 - decay) * grad * grad
new_grad = (np.sqrt(mom_delta_in_f32 + epsilon) /
np.sqrt(mom_out + epsilon)) * grad
param_out = param_in_f32 + lr * new_grad
mom_delta_out = decay * mom_delta_in_f32 + (1.0 - decay
) * new_grad * new_grad
if(using_fp16):
return (param_out.astype(np.float16), mom_out.astype(np.float16),
mom_delta_out.astype(np.float16))
else:
return (param_out.astype(np.float32), mom_out.astype(np.float32),
mom_delta_out.astype(np.float32))
@given(inputs=hu.tensors(n=4),
lr=hu.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=hu.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
decay=hu.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
**hu.gcs)
@settings(deadline=10000)
def test_adadelta(self, inputs, lr, epsilon, decay, gc, dc):
param, moment, moment_delta, grad = inputs
moment = np.abs(moment)
moment_delta = np.abs(moment_delta)
lr = np.array([lr], dtype=np.float32)
op = core.CreateOperator(
"Adadelta",
["param", "moment", "moment_delta", "grad", "lr"],
["param", "moment", "moment_delta"],
epsilon=epsilon,
decay=decay,
device_option=gc,
)
self.assertReferenceChecks(
gc, op,
[param, moment, moment_delta, grad, lr],
functools.partial(self.ref_adadelta, epsilon=epsilon, decay=decay))
# Suppress filter_too_much health check.
# Likely caused by `assume` call falling through too often.
@settings(suppress_health_check=[HealthCheck.filter_too_much], deadline=10000)
@given(inputs=hu.tensors(n=4),
lr=hu.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=hu.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
decay=hu.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
**hu.gcs)
def test_sparse_adadelta(self, inputs, lr, epsilon, decay, gc, dc):
param, moment, moment_delta, grad = inputs
moment = np.abs(moment)
moment_delta = np.abs(moment_delta)
lr = np.array([lr], dtype=np.float32)
# Create an indexing array containing values that are lists of indices,
# which index into grad
indices = np.random.choice(np.arange(grad.shape[0]),
size=np.random.randint(grad.shape[0]), replace=False)
# Sparsify grad
grad = grad[indices]
op = core.CreateOperator(
"SparseAdadelta",
["param", "moment", "moment_delta", "indices", "grad", "lr"],
["param", "moment", "moment_delta"],
epsilon=epsilon,
decay=decay,
device_option=gc)
def ref_sparse(param, moment, moment_delta, indices, grad, lr, decay,
ref_using_fp16):
param_out = np.copy(param)
moment_out = np.copy(moment)
moment_delta_out = np.copy(moment_delta)
for i, index in enumerate(indices):
param_out[index], moment_out[index], moment_delta_out[
index] = self.ref_adadelta(param[index], moment[index],
moment_delta[index], grad[i], lr,
epsilon, decay, ref_using_fp16)
return (param_out, moment_out, moment_delta_out)
ref_using_fp16_values = [False]
if gc == hu.gpu_do:
ref_using_fp16_values.append(True)
for ref_using_fp16 in ref_using_fp16_values:
moment_i = None
moment_delta_i = None
param_i = None
if(ref_using_fp16):
moment_i = moment.astype(np.float16)
moment_delta_i = moment_delta.astype(np.float16)
param_i = param.astype(np.float16)
else:
moment_i = moment.astype(np.float32)
moment_delta_i = moment_delta.astype(np.float32)
param_i = param.astype(np.float32)
self.assertReferenceChecks(gc, op, [
param_i, moment_i, moment_delta_i, indices, grad, lr, decay,
ref_using_fp16
], ref_sparse)
@given(inputs=hu.tensors(n=3),
lr=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
decay=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
**hu.gcs)
@settings(deadline=None)
def test_sparse_adadelta_empty(self, inputs, lr, epsilon, decay, gc, dc):
param, moment, moment_delta = inputs
moment = np.abs(moment)
lr = np.array([lr], dtype=np.float32)
grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32)
indices = np.empty(shape=(0,), dtype=np.int64)
hypothesis.note('indices.shape: %s' % str(indices.shape))
op = core.CreateOperator(
"SparseAdadelta",
["param", "moment", "moment_delta", "indices", "grad", "lr"],
["param", "moment", "moment_delta"],
epsilon=epsilon,
decay=decay,
device_option=gc)
def ref_sparse_empty(param, moment, moment_delta, indices, grad, lr, decay):
param_out = np.copy(param)
moment_out = np.copy(moment)
moment_delta_out = np.copy(moment_delta)
return (param_out, moment_out, moment_delta_out)
ref_using_fp16_values = [False]
if gc == hu.gpu_do:
ref_using_fp16_values.append(True)
for ref_using_fp16 in ref_using_fp16_values:
moment_i = None
moment_delta_i = None
param_i = None
if(ref_using_fp16):
moment_i = moment.astype(np.float16)
moment_delta_i = moment_delta.astype(np.float16)
param_i = param.astype(np.float16)
else:
moment_i = moment.astype(np.float32)
moment_delta_i = moment_delta.astype(np.float32)
param_i = param.astype(np.float32)
self.assertReferenceChecks(
gc,
op,
[param_i, moment_i, moment_delta_i, indices, grad, lr, decay],
ref_sparse_empty
)
|