1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
from functools import partial
import caffe2.python.hypothesis_test_util as hu
import numpy as np
from caffe2.python import core
def ref_adagrad(
param_in,
mom_in,
grad,
lr,
epsilon,
using_fp16=False,
output_effective_lr=False,
output_effective_lr_and_update=False,
decay=1.0,
row_wise=False,
weight_decay=0.0,
counter_halflife=-1,
count=None, # only used when counter_halflife != -1
):
mom_in_f32 = mom_in
param_in_f32 = param_in
if using_fp16:
mom_in_f32 = mom_in.astype(np.float32)
param_in_f32 = param_in.astype(np.float32)
if count and count > 0 and counter_halflife > 0:
weight_decay *= counter_halflife / count
grad_temp = grad + weight_decay * param_in_f32
if row_wise:
mom_out = decay * mom_in_f32 + np.mean(np.square(grad_temp))
else:
mom_out = decay * mom_in_f32 + np.square(grad_temp)
effective_lr = lr / (np.sqrt(mom_out) + epsilon)
grad_adj = effective_lr * grad_temp
param_out = param_in_f32 + grad_adj
if output_effective_lr_and_update:
if using_fp16:
return (
param_out.astype(np.float16),
mom_out.astype(np.float16),
effective_lr.astype(np.float16),
grad_adj.astype(np.float16),
)
else:
return (
param_out.astype(np.float32),
mom_out.astype(np.float32),
effective_lr.astype(np.float32),
grad_adj.astype(np.float32),
)
elif output_effective_lr:
if using_fp16:
return (
param_out.astype(np.float16),
mom_out.astype(np.float16),
effective_lr.astype(np.float16),
)
else:
return (
param_out.astype(np.float32),
mom_out.astype(np.float32),
effective_lr.astype(np.float32),
)
if using_fp16:
return (param_out.astype(np.float16), mom_out.astype(np.float16))
else:
return (param_out.astype(np.float32), mom_out.astype(np.float32))
def adagrad_sparse_test_helper(
parent_test,
inputs,
lr,
epsilon,
engine,
ref_adagrad,
gc,
dc,
row_wise=False,
weight_decay=0.0,
counter_halflife=-1,
):
param, momentum, grad = inputs
if row_wise:
# For row-wise adagrad, only take the first element of each row
momentum = momentum.reshape(momentum.shape[0], -1)[:, 0]
momentum = np.abs(momentum)
lr = np.array([lr], dtype=np.float32)
count = None
if counter_halflife != -1:
count = np.random.rand(param.shape[0])
# Create an indexing array containing values that are lists of indices,
# which index into grad
if grad.size == 0:
indices = np.empty(shape=(0,), dtype=np.int)
else:
indices = np.random.choice(
np.arange(grad.shape[0]),
size=np.random.randint(grad.shape[0]),
replace=False,
)
# Sparsify grad
grad = grad[indices]
op = core.CreateOperator(
"RowWiseSparseAdagrad" if row_wise else "SparseAdagrad",
["param", "momentum", "indices", "grad", "lr"] if count is None else ["param", "momentum", "indices", "grad", "lr", "count"],
["param", "momentum"],
epsilon=epsilon,
weight_decay=weight_decay,
counter_halflife=counter_halflife,
engine=engine,
device_option=gc,
)
def ref_sparse(param, momentum, indices, grad, lr, count=None, ref_using_fp16=False):
param_out = np.copy(param)
momentum_out = np.copy(momentum)
# Need to do this because it's possible ref_adagrad's using_fp16 could
# have been already specialized.
ref_adagrad_temp = (
partial(ref_adagrad, using_fp16=ref_using_fp16)
if ref_using_fp16
else ref_adagrad
)
for i, index in enumerate(indices):
param_out[index], momentum_out[index] = ref_adagrad_temp(
param[index],
momentum[index],
grad[i],
lr,
epsilon,
weight_decay=weight_decay,
counter_halflife=counter_halflife,
count=None if count is None else count[index],
)
return (param_out, momentum_out)
ref_using_fp16_values = [False]
if gc == hu.gpu_do and not row_wise:
ref_using_fp16_values.append(True)
for ref_using_fp16 in ref_using_fp16_values:
if ref_using_fp16:
print("test_sparse_adagrad with half precision embedding")
momentum_i = momentum.astype(np.float16)
param_i = param.astype(np.float16)
else:
print("test_sparse_adagrad with full precision embedding")
momentum_i = momentum.astype(np.float32)
param_i = param.astype(np.float32)
parent_test.assertReferenceChecks(
gc,
op,
[param_i, momentum_i, indices, grad, lr, count, ref_using_fp16],
ref_sparse
)
|