1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
from caffe2.python import workspace, core, rnn_cell
from caffe2.python.model_helper import ModelHelper
from caffe2.python.rnn.rnn_cell_test_util import tanh
import caffe2.python.hypothesis_test_util as hu
from hypothesis import given
from hypothesis import settings as ht_settings
import hypothesis.strategies as st
import numpy as np
import unittest
def basic_rnn_reference(input, hidden_initial,
i2h_w, i2h_b,
gate_w, gate_b,
seq_lengths,
drop_states,
use_sequence_lengths):
D = hidden_initial.shape[-1]
T = input.shape[0]
N = input.shape[1]
if seq_lengths is not None:
seq_lengths = (np.ones(shape=(N, D)) *
seq_lengths.reshape(N, 1)).astype(np.int32)
ret = []
hidden_prev = hidden_initial
for t in range(T):
input_fc = np.dot(input[t], i2h_w.T) + i2h_b
recur_fc = np.dot(hidden_prev, gate_w.T) + gate_b
hidden_t = tanh(input_fc + recur_fc)
if seq_lengths is not None:
valid = (t < seq_lengths).astype(np.int32)
assert valid.shape == (N, D), (valid.shape, (N, D))
hidden_t = hidden_t * valid + \
hidden_prev * (1 - valid) * (1 - drop_states)
ret.append(hidden_t)
hidden_prev = hidden_t
return ret
class BasicRNNCellTest(hu.HypothesisTestCase):
@given(
seed=st.integers(0, 2**32 - 1),
seq_length=st.integers(min_value=1, max_value=5),
batch_size=st.integers(min_value=1, max_value=5),
input_size=st.integers(min_value=1, max_value=5),
hidden_size=st.integers(min_value=1, max_value=5),
drop_states=st.booleans(),
sequence_lengths=st.booleans(),
**hu.gcs
)
@ht_settings(max_examples=15)
def test_basic_rnn(self, seed, seq_length, batch_size, input_size, hidden_size,
drop_states, sequence_lengths, gc, dc):
np.random.seed(seed)
seq_lengths_data = np.random.randint(
1, seq_length + 1, size=(batch_size,)).astype(np.int32)
input_blob_data = np.random.randn(
seq_length, batch_size, input_size).astype(np.float32)
initial_h_data = np.random.randn(
batch_size, hidden_size).astype(np.float32)
gates_t_w_data = np.random.randn(
hidden_size, hidden_size).astype(np.float32)
gates_t_b_data = np.random.randn(
hidden_size).astype(np.float32)
i2h_w_data = np.random.randn(
hidden_size, input_size).astype(np.float32)
i2h_b_data = np.random.randn(
hidden_size).astype(np.float32)
with core.DeviceScope(gc):
with hu.temp_workspace():
workspace.FeedBlob(
'input_blob', input_blob_data, device_option=gc)
workspace.FeedBlob(
'seq_lengths', seq_lengths_data, device_option=gc)
workspace.FeedBlob(
'initial_h', initial_h_data, device_option=gc)
workspace.FeedBlob(
'basic_rnn/gates_t_w', gates_t_w_data, device_option=gc)
workspace.FeedBlob(
'basic_rnn/gates_t_b', gates_t_b_data, device_option=gc)
workspace.FeedBlob(
'basic_rnn/i2h_w', i2h_w_data, device_option=gc)
workspace.FeedBlob(
'basic_rnn/i2h_b', i2h_b_data, device_option=gc)
model = ModelHelper(name='model')
hidden_t_all, _ = rnn_cell.BasicRNN(
model,
'input_blob',
'seq_lengths' if sequence_lengths else None,
['initial_h'],
input_size,
hidden_size,
"basic_rnn",
activation='tanh',
forward_only=True,
drop_states=drop_states)
workspace.RunNetOnce(model.net)
result = workspace.FetchBlob(hidden_t_all)
reference = basic_rnn_reference(
input_blob_data,
initial_h_data,
i2h_w_data,
i2h_b_data,
gates_t_w_data,
gates_t_b_data,
seq_lengths_data if sequence_lengths else None,
drop_states=drop_states,
use_sequence_lengths=sequence_lengths
)
np.testing.assert_allclose(result, reference, atol=1e-4, rtol=1e-4)
if __name__ == "__main__":
workspace.GlobalInit([
'caffe2',
'--caffe2_log_level=0',
])
unittest.main()
|