1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
from caffe2.python import core
from hypothesis import given, settings
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
import hypothesis.strategies as st
import numpy as np
# Reference implementation from detectron/lib/utils/boxes.py
def bbox_transform(boxes, deltas, weights=(1.0, 1.0, 1.0, 1.0)):
"""Forward transform that maps proposal boxes to predicted ground-truth
boxes using bounding-box regression deltas. See bbox_transform_inv for a
description of the weights argument.
"""
if boxes.shape[0] == 0:
return np.zeros((0, deltas.shape[1]), dtype=deltas.dtype)
boxes = boxes.astype(deltas.dtype, copy=False)
widths = boxes[:, 2] - boxes[:, 0] + 1.0
heights = boxes[:, 3] - boxes[:, 1] + 1.0
ctr_x = boxes[:, 0] + 0.5 * widths
ctr_y = boxes[:, 1] + 0.5 * heights
wx, wy, ww, wh = weights
dx = deltas[:, 0::4] / wx
dy = deltas[:, 1::4] / wy
dw = deltas[:, 2::4] / ww
dh = deltas[:, 3::4] / wh
# Prevent sending too large values into np.exp()
BBOX_XFORM_CLIP = np.log(1000. / 16.)
dw = np.minimum(dw, BBOX_XFORM_CLIP)
dh = np.minimum(dh, BBOX_XFORM_CLIP)
pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis]
pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis]
pred_w = np.exp(dw) * widths[:, np.newaxis]
pred_h = np.exp(dh) * heights[:, np.newaxis]
pred_boxes = np.zeros(deltas.shape, dtype=deltas.dtype)
# x1
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w
# y1
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h
# x2 (note: "- 1" is correct; don't be fooled by the asymmetry)
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w - 1
# y2 (note: "- 1" is correct; don't be fooled by the asymmetry)
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h - 1
return pred_boxes
# Reference implementation from detectron/lib/utils/boxes.py
def clip_tiled_boxes(boxes, im_shape):
"""Clip boxes to image boundaries. im_shape is [height, width] and boxes
has shape (N, 4 * num_tiled_boxes)."""
assert (
boxes.shape[1] % 4 == 0
), "boxes.shape[1] is {:d}, but must be divisible by 4.".format(
boxes.shape[1]
)
# x1 >= 0
boxes[:, 0::4] = np.maximum(np.minimum(boxes[:, 0::4], im_shape[1] - 1), 0)
# y1 >= 0
boxes[:, 1::4] = np.maximum(np.minimum(boxes[:, 1::4], im_shape[0] - 1), 0)
# x2 < im_shape[1]
boxes[:, 2::4] = np.maximum(np.minimum(boxes[:, 2::4], im_shape[1] - 1), 0)
# y2 < im_shape[0]
boxes[:, 3::4] = np.maximum(np.minimum(boxes[:, 3::4], im_shape[0] - 1), 0)
return boxes
def generate_rois(roi_counts, im_dims):
assert len(roi_counts) == len(im_dims)
all_rois = []
for i, num_rois in enumerate(roi_counts):
if num_rois == 0:
continue
# [batch_idx, x1, y1, x2, y2]
rois = np.random.uniform(0, im_dims[i], size=(roi_counts[i], 5)).astype(
np.float32
)
rois[:, 0] = i # batch_idx
# Swap (x1, x2) if x1 > x2
rois[:, 1], rois[:, 3] = (
np.minimum(rois[:, 1], rois[:, 3]),
np.maximum(rois[:, 1], rois[:, 3]),
)
# Swap (y1, y2) if y1 > y2
rois[:, 2], rois[:, 4] = (
np.minimum(rois[:, 2], rois[:, 4]),
np.maximum(rois[:, 2], rois[:, 4]),
)
all_rois.append(rois)
if len(all_rois) > 0:
return np.vstack(all_rois)
return np.empty((0, 5)).astype(np.float32)
def bbox_transform_rotated(
boxes,
deltas,
weights=(1.0, 1.0, 1.0, 1.0),
angle_bound_on=True,
angle_bound_lo=-90,
angle_bound_hi=90,
):
"""
Similar to bbox_transform but for rotated boxes with angle info.
"""
if boxes.shape[0] == 0:
return np.zeros((0, deltas.shape[1]), dtype=deltas.dtype)
boxes = boxes.astype(deltas.dtype, copy=False)
ctr_x = boxes[:, 0]
ctr_y = boxes[:, 1]
widths = boxes[:, 2]
heights = boxes[:, 3]
angles = boxes[:, 4]
wx, wy, ww, wh = weights
dx = deltas[:, 0::5] / wx
dy = deltas[:, 1::5] / wy
dw = deltas[:, 2::5] / ww
dh = deltas[:, 3::5] / wh
da = deltas[:, 4::5] * 180.0 / np.pi
# Prevent sending too large values into np.exp()
BBOX_XFORM_CLIP = np.log(1000. / 16.)
dw = np.minimum(dw, BBOX_XFORM_CLIP)
dh = np.minimum(dh, BBOX_XFORM_CLIP)
pred_boxes = np.zeros(deltas.shape, dtype=deltas.dtype)
pred_boxes[:, 0::5] = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis]
pred_boxes[:, 1::5] = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis]
pred_boxes[:, 2::5] = np.exp(dw) * widths[:, np.newaxis]
pred_boxes[:, 3::5] = np.exp(dh) * heights[:, np.newaxis]
pred_angle = da + angles[:, np.newaxis]
if angle_bound_on:
period = angle_bound_hi - angle_bound_lo
assert period % 180 == 0
pred_angle[np.where(pred_angle < angle_bound_lo)] += period
pred_angle[np.where(pred_angle > angle_bound_hi)] -= period
pred_boxes[:, 4::5] = pred_angle
return pred_boxes
def clip_tiled_boxes_rotated(boxes, im_shape, angle_thresh=1.0):
"""
Similar to clip_tiled_boxes but for rotated boxes with angle info.
Only clips almost horizontal boxes within angle_thresh. The rest are
left unchanged.
"""
assert (
boxes.shape[1] % 5 == 0
), "boxes.shape[1] is {:d}, but must be divisible by 5.".format(
boxes.shape[1]
)
(H, W) = im_shape[:2]
# Filter boxes that are almost upright within angle_thresh tolerance
idx = np.where(np.abs(boxes[:, 4::5]) <= angle_thresh)
idx5 = idx[1] * 5
# convert to (x1, y1, x2, y2)
x1 = boxes[idx[0], idx5] - (boxes[idx[0], idx5 + 2] - 1) / 2.0
y1 = boxes[idx[0], idx5 + 1] - (boxes[idx[0], idx5 + 3] - 1) / 2.0
x2 = boxes[idx[0], idx5] + (boxes[idx[0], idx5 + 2] - 1) / 2.0
y2 = boxes[idx[0], idx5 + 1] + (boxes[idx[0], idx5 + 3] - 1) / 2.0
# clip
x1 = np.maximum(np.minimum(x1, W - 1), 0)
y1 = np.maximum(np.minimum(y1, H - 1), 0)
x2 = np.maximum(np.minimum(x2, W - 1), 0)
y2 = np.maximum(np.minimum(y2, H - 1), 0)
# convert back to (xc, yc, w, h)
boxes[idx[0], idx5] = (x1 + x2) / 2.0
boxes[idx[0], idx5 + 1] = (y1 + y2) / 2.0
boxes[idx[0], idx5 + 2] = x2 - x1 + 1
boxes[idx[0], idx5 + 3] = y2 - y1 + 1
return boxes
def generate_rois_rotated(roi_counts, im_dims):
rois = generate_rois(roi_counts, im_dims)
# [batch_id, ctr_x, ctr_y, w, h, angle]
rotated_rois = np.empty((rois.shape[0], 6)).astype(np.float32)
rotated_rois[:, 0] = rois[:, 0] # batch_id
rotated_rois[:, 1] = (rois[:, 1] + rois[:, 3]) / 2. # ctr_x = (x1 + x2) / 2
rotated_rois[:, 2] = (rois[:, 2] + rois[:, 4]) / 2. # ctr_y = (y1 + y2) / 2
rotated_rois[:, 3] = rois[:, 3] - rois[:, 1] + 1.0 # w = x2 - x1 + 1
rotated_rois[:, 4] = rois[:, 4] - rois[:, 2] + 1.0 # h = y2 - y1 + 1
rotated_rois[:, 5] = np.random.uniform(-90.0, 90.0) # angle in degrees
return rotated_rois
class TestBBoxTransformOp(serial.SerializedTestCase):
@given(
num_rois=st.integers(1, 10),
num_classes=st.integers(1, 10),
im_dim=st.integers(100, 600),
skip_batch_id=st.booleans(),
rotated=st.booleans(),
angle_bound_on=st.booleans(),
clip_angle_thresh=st.sampled_from([-1.0, 1.0]),
**hu.gcs_cpu_only
)
@settings(deadline=10000)
def test_bbox_transform(
self,
num_rois,
num_classes,
im_dim,
skip_batch_id,
rotated,
angle_bound_on,
clip_angle_thresh,
gc,
dc,
):
"""
Test with all rois belonging to a single image per run.
"""
rois = (
generate_rois_rotated([num_rois], [im_dim])
if rotated
else generate_rois([num_rois], [im_dim])
)
box_dim = 5 if rotated else 4
if skip_batch_id:
rois = rois[:, 1:]
deltas = np.random.randn(num_rois, box_dim * num_classes).astype(np.float32)
im_info = np.array([im_dim, im_dim, 1.0]).astype(np.float32).reshape(1, 3)
def bbox_transform_ref(rois, deltas, im_info):
boxes = rois if rois.shape[1] == box_dim else rois[:, 1:]
im_shape = im_info[0, 0:2]
if rotated:
box_out = bbox_transform_rotated(
boxes, deltas, angle_bound_on=angle_bound_on
)
box_out = clip_tiled_boxes_rotated(
box_out, im_shape, angle_thresh=clip_angle_thresh
)
else:
box_out = bbox_transform(boxes, deltas)
box_out = clip_tiled_boxes(box_out, im_shape)
return [box_out]
op = core.CreateOperator(
"BBoxTransform",
["rois", "deltas", "im_info"],
["box_out"],
apply_scale=False,
correct_transform_coords=True,
rotated=rotated,
angle_bound_on=angle_bound_on,
clip_angle_thresh=clip_angle_thresh,
)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[rois, deltas, im_info],
reference=bbox_transform_ref,
)
@given(
roi_counts=st.lists(st.integers(0, 5), min_size=1, max_size=10),
num_classes=st.integers(1, 10),
rotated=st.booleans(),
angle_bound_on=st.booleans(),
clip_angle_thresh=st.sampled_from([-1.0, 1.0]),
**hu.gcs_cpu_only
)
@settings(deadline=10000)
def test_bbox_transform_batch(
self,
roi_counts,
num_classes,
rotated,
angle_bound_on,
clip_angle_thresh,
gc,
dc,
):
"""
Test with rois for multiple images in a batch
"""
batch_size = len(roi_counts)
total_rois = sum(roi_counts)
im_dims = np.random.randint(100, 600, batch_size)
rois = (
generate_rois_rotated(roi_counts, im_dims)
if rotated
else generate_rois(roi_counts, im_dims)
)
box_dim = 5 if rotated else 4
deltas = np.random.randn(total_rois, box_dim * num_classes).astype(np.float32)
im_info = np.zeros((batch_size, 3)).astype(np.float32)
im_info[:, 0] = im_dims
im_info[:, 1] = im_dims
im_info[:, 2] = 1.0
def bbox_transform_ref(rois, deltas, im_info):
box_out = []
offset = 0
for i, num_rois in enumerate(roi_counts):
if num_rois == 0:
continue
cur_boxes = rois[offset : offset + num_rois, 1:]
cur_deltas = deltas[offset : offset + num_rois]
im_shape = im_info[i, 0:2]
if rotated:
cur_box_out = bbox_transform_rotated(
cur_boxes, cur_deltas, angle_bound_on=angle_bound_on
)
cur_box_out = clip_tiled_boxes_rotated(
cur_box_out, im_shape, angle_thresh=clip_angle_thresh
)
else:
cur_box_out = bbox_transform(cur_boxes, cur_deltas)
cur_box_out = clip_tiled_boxes(cur_box_out, im_shape)
box_out.append(cur_box_out)
offset += num_rois
if len(box_out) > 0:
box_out = np.vstack(box_out)
else:
box_out = np.empty(deltas.shape).astype(np.float32)
return [box_out, roi_counts]
op = core.CreateOperator(
"BBoxTransform",
["rois", "deltas", "im_info"],
["box_out", "roi_batch_splits"],
apply_scale=False,
correct_transform_coords=True,
rotated=rotated,
angle_bound_on=angle_bound_on,
clip_angle_thresh=clip_angle_thresh,
)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[rois, deltas, im_info],
reference=bbox_transform_ref,
)
|