1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
from typing import List
import hypothesis.strategies as st
from caffe2.python import core, workspace
from hypothesis import given
import caffe2.python.hypothesis_test_util as hu
import bisect
import numpy as np
class TestBisectPercentileOp(hu.HypothesisTestCase):
def compare_reference(
self,
raw_data,
pct_raw_data,
pct_mapping,
pct_upper,
pct_lower,
lengths,
):
def bisect_percentile_op_ref(
raw_data,
pct_raw_data,
pct_mapping,
pct_lower,
pct_upper,
lengths
):
results = np.zeros_like(raw_data)
indices = [0]
for j in range(len(lengths)):
indices.append(indices[j] + lengths[j])
for i in range(len(raw_data)):
for j in range(len(raw_data[0])):
start = indices[j]
end = indices[j + 1]
val = raw_data[i][j]
pct_raw_data_i = pct_raw_data[start:end]
pct_lower_i = pct_lower[start:end]
pct_upper_i = pct_upper[start:end]
pct_mapping_i = pct_mapping[start:end]
# Corner cases
if val < pct_raw_data_i[0]:
results[i][j] = 0
continue
if val > pct_raw_data_i[-1]:
results[i][j] = 1.
continue
# interpolation
k = bisect.bisect_left(pct_raw_data_i, val)
if pct_raw_data_i[k] == val:
results[i][j] = pct_mapping_i[k]
else:
k = k - 1
slope = ((pct_lower_i[k + 1] - pct_upper_i[k])
/ (pct_raw_data_i[k + 1] - pct_raw_data_i[k]))
results[i][j] = pct_upper_i[k] + \
slope * (val - pct_raw_data_i[k])
return results
workspace.ResetWorkspace()
workspace.FeedBlob("raw_data", raw_data)
op = core.CreateOperator(
"BisectPercentile",
["raw_data"],
["pct_output"],
percentile_raw=pct_raw_data,
percentile_mapping=pct_mapping,
percentile_lower=pct_lower,
percentile_upper=pct_upper,
lengths=lengths
)
workspace.RunOperatorOnce(op)
expected_output = bisect_percentile_op_ref(
raw_data,
pct_raw_data,
pct_mapping,
pct_lower,
pct_upper,
lengths
)
output = workspace.blobs['pct_output']
np.testing.assert_array_almost_equal(output, expected_output)
def test_bisect_percentil_op_simple(self):
raw_data = np.array([
[1, 1],
[2, 2],
[3, 3],
[3, 1],
[9, 10],
[1.5, 5],
[1.32, 2.4],
[2.9, 5.7],
[-1, -1],
[3, 7]
], dtype=np.float32)
pct_raw_data = np.array([1, 2, 3, 2, 7], dtype=np.float32)
pct_lower = np.array([0.1, 0.2, 0.9, 0.1, 0.5], dtype=np.float32)
pct_upper = np.array([0.1, 0.8, 1.0, 0.4, 1.0], dtype=np.float32)
pct_mapping = np.array([0.1, 0.5, 0.95, 0.25, 0.75], dtype=np.float32)
lengths = np.array([3, 2], dtype=np.int32)
self.compare_reference(
raw_data, pct_raw_data, pct_mapping, pct_lower, pct_upper, lengths)
@given(
N=st.integers(min_value=20, max_value=100),
lengths_in=st.lists(
elements=st.integers(min_value=2, max_value=10),
min_size=2,
max_size=5,
),
max_value=st.integers(min_value=100, max_value=1000),
discrete=st.booleans(),
p=st.floats(min_value=0, max_value=0.9),
**hu.gcs_cpu_only
)
def test_bisect_percentil_op_large(
self, N: int, lengths_in: List[int], max_value: int, discrete: bool, p: float, gc, dc
):
lengths = np.array(lengths_in, dtype=np.int32)
D = len(lengths)
if discrete:
raw_data = np.random.randint(0, max_value, size=(N, D))
else:
raw_data = np.random.randn(N, D)
# To generate valid pct_lower and pct_upper
pct_lower = []
pct_upper = []
pct_raw_data = []
for i in range(D):
pct_lower_val = 0.
pct_upper_val = 0.
pct_lower_cur = []
pct_upper_cur = []
# There is no duplicated values in pct_raw_data
if discrete:
pct_raw_data_cur = np.random.choice(
np.arange(max_value), size=lengths[i], replace=False)
else:
pct_raw_data_cur = np.random.randn(lengths[i])
while len(set(pct_raw_data_cur)) < lengths[i]:
pct_raw_data_cur = np.random.randn(lengths[i])
pct_raw_data_cur = np.sort(pct_raw_data_cur)
for _ in range(lengths[i]):
pct_lower_val = pct_upper_val + 0.01
pct_lower_cur.append(pct_lower_val)
pct_upper_val = pct_lower_val + \
0.01 * np.random.randint(1, 20) * (np.random.uniform() < p)
pct_upper_cur.append(pct_upper_val)
# normalization
pct_lower_cur = np.array(pct_lower_cur, np.float32) / pct_upper_val
pct_upper_cur = np.array(pct_upper_cur, np.float32) / pct_upper_val
pct_lower.extend(pct_lower_cur)
pct_upper.extend(pct_upper_cur)
pct_raw_data.extend(pct_raw_data_cur)
pct_lower = np.array(pct_lower, dtype=np.float32)
pct_upper = np.array(pct_upper, dtype=np.float32)
pct_mapping = (pct_lower + pct_upper) / 2.
raw_data = np.array(raw_data, dtype=np.float32)
pct_raw_data = np.array(pct_raw_data, dtype=np.float32)
self.compare_reference(
raw_data, pct_raw_data, pct_mapping, pct_lower, pct_upper, lengths)
if __name__ == "__main__":
import unittest
unittest.main()
|