1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
|
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core
class ChannelShuffleOpsTest(serial.SerializedTestCase):
def _channel_shuffle_nchw_ref(self, X, group):
dims = X.shape
N = dims[0]
C = dims[1]
G = group
K = int(C / G)
X = X.reshape(N, G, K, np.prod(dims[2:]))
Y = np.transpose(X, axes=(0, 2, 1, 3))
return [Y.reshape(dims)]
def _channel_shuffle_nhwc_ref(self, X, group):
dims = X.shape
N = dims[0]
C = dims[-1]
G = group
K = int(C / G)
X = X.reshape(N, np.prod(dims[1:-1]), G, K)
Y = np.transpose(X, axes=(0, 1, 3, 2))
return [Y.reshape(dims)]
@serial.given(
N=st.integers(0, 5),
G=st.integers(1, 5),
K=st.integers(1, 5),
H=st.integers(1, 5),
W=st.integers(1, 5),
order=st.sampled_from(["NCHW", "NHWC"]),
**hu.gcs
)
def test_channel_shuffle(self, N, G, K, H, W, order, gc, dc):
C = G * K
if order == "NCHW":
X = np.random.randn(N, C, H, W).astype(np.float32)
else:
X = np.random.randn(N, H, W, C).astype(np.float32)
op = core.CreateOperator("ChannelShuffle", ["X"], ["Y"], group=G, order=order)
def channel_shuffle_ref(X):
if order == "NCHW":
return self._channel_shuffle_nchw_ref(X, G)
else:
return self._channel_shuffle_nhwc_ref(X, G)
self.assertReferenceChecks(gc, op, [X], channel_shuffle_ref)
self.assertGradientChecks(gc, op, [X], 0, [0])
self.assertDeviceChecks(dc, op, [X], [0])
|