File: clip_op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (68 lines) | stat: -rw-r--r-- 1,984 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68





import numpy as np

from hypothesis import given, settings
import hypothesis.strategies as st

from caffe2.python import core
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial


class TestClip(serial.SerializedTestCase):
    @given(X=hu.tensor(min_dim=0),
           min_=st.floats(min_value=-2, max_value=0),
           max_=st.floats(min_value=0, max_value=2),
           inplace=st.booleans(),
           **hu.gcs)
    @settings(deadline=10000)
    def test_clip(self, X, min_, max_, inplace, gc, dc):
        # go away from the origin point to avoid kink problems
        if np.isscalar(X):
            X = np.array([], dtype=np.float32)
        else:
            X[np.abs(X - min_) < 0.05] += 0.1
            X[np.abs(X - max_) < 0.05] += 0.1

        def clip_ref(X):
            X = X.clip(min_, max_)
            return (X,)

        op = core.CreateOperator(
            "Clip",
            ["X"], ["Y" if not inplace else "X"],
            min=min_,
            max=max_)
        self.assertReferenceChecks(gc, op, [X], clip_ref)
        # Check over multiple devices
        self.assertDeviceChecks(dc, op, [X], [0])
        # Gradient check wrt X
        self.assertGradientChecks(gc, op, [X], 0, [0])

    @given(X=hu.tensor(min_dim=0),
           inplace=st.booleans(),
           **hu.gcs)
    def test_clip_default(self, X, inplace, gc, dc):
        # go away from the origin point to avoid kink problems
        if np.isscalar(X):
            X = np.array([], dtype=np.float32)
        else:
            X += 0.04 * np.sign(X)
        def clip_ref(X):
            return (X,)

        op = core.CreateOperator(
            "Clip",
            ["X"], ["Y" if not inplace else "X"])
        self.assertReferenceChecks(gc, op, [X], clip_ref)
        # Check over multiple devices
        self.assertDeviceChecks(dc, op, [X], [0])


if __name__ == "__main__":
    import unittest
    unittest.main()