File: clip_tensor_op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (63 lines) | stat: -rw-r--r-- 2,076 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63





from caffe2.python import core
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
import hypothesis.strategies as st
from hypothesis import given, settings
import numpy as np


class TestClipTensorByScalingOp(serial.SerializedTestCase):

    @given(n=st.integers(5, 8), d=st.integers(2, 4),
           threshold=st.floats(0.1, 10),
           additional_threshold=st.floats(0.1, 10),
           use_additional_threshold=st.booleans(),
           inplace=st.booleans(),
           **hu.gcs_cpu_only)
    @settings(deadline=10000)
    def test_clip_tensor_by_scaling(self, n, d, threshold, additional_threshold,
                                    use_additional_threshold, inplace, gc, dc):

        tensor = np.random.rand(n, d).astype(np.float32)
        val = np.array(np.linalg.norm(tensor))
        additional_threshold = np.array([additional_threshold]).astype(np.float32)

        def clip_tensor_by_scaling_ref(tensor_data, val_data,
                                       additional_threshold=None):

            if additional_threshold is not None:
                final_threshold = threshold * additional_threshold
            else:
                final_threshold = threshold

            if val_data > final_threshold:
                ratio = final_threshold / float(val_data)
                tensor_data = tensor_data * ratio

            return [tensor_data]

        op = core.CreateOperator(
            "ClipTensorByScaling",
            ["tensor", "val"] if not use_additional_threshold else (
                ["tensor", "val", "additional_threshold"]),
            ['Y'] if not inplace else ["tensor"],
            threshold=threshold,
        )

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[tensor, val] if not use_additional_threshold else (
                [tensor, val, additional_threshold]),
            reference=clip_tensor_by_scaling_ref,
        )


if __name__ == "__main__":
    import unittest
    unittest.main()