1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
from caffe2.python import core
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
from hypothesis import given, settings
import hypothesis.strategies as st
import numpy as np
import unittest
@st.composite
def _tensor_splits(draw, add_axis=False):
"""Generates (axis, split_info, tensor_splits) tuples."""
tensor = draw(hu.tensor(min_value=4)) # Each dim has at least 4 elements.
axis = draw(st.integers(-len(tensor.shape), len(tensor.shape) - 1))
if add_axis:
# Simple case: get individual slices along one axis, where each of them
# is (N-1)-dimensional. The axis will be added back upon concatenation.
return (
axis,
np.ones(tensor.shape[axis], dtype=np.int32),
[
np.array(tensor.take(i, axis=axis))
for i in range(tensor.shape[axis])
]
)
else:
# General case: pick some (possibly consecutive, even non-unique)
# indices at which we will split the tensor, along the given axis.
splits = sorted(draw(
st.lists(elements=st.integers(0, tensor.shape[axis]), max_size=4)
) + [0, tensor.shape[axis]])
return (
axis,
np.array(np.diff(splits), dtype=np.int32),
[
tensor.take(range(splits[i], splits[i + 1]), axis=axis)
for i in range(len(splits) - 1)
],
)
class TestConcatSplitOps(serial.SerializedTestCase):
@serial.given(tensor_splits=_tensor_splits(),
**hu.gcs)
def test_concat(self, tensor_splits, gc, dc):
axis, _, splits = tensor_splits
op = core.CreateOperator(
"Concat",
['X_{}'.format(i) for i in range(len(splits))],
['concat_result', 'split_info'],
axis=axis
)
self.assertReferenceChecks(
gc, op, splits, lambda *splits: (
np.concatenate(splits, axis=axis),
np.array([a.shape[axis] for a in splits])
),
ensure_outputs_are_inferred=True,
)
self.assertDeviceChecks(dc, op, splits, [0, 1])
self.assertGradientChecks(
gc, op, splits, 0, [0],
ensure_outputs_are_inferred=True,
)
@given(tensor_splits=_tensor_splits(add_axis=True),
**hu.gcs)
@settings(deadline=10000)
def test_concat_add_axis(self, tensor_splits, gc, dc):
axis, _, splits = tensor_splits
op = core.CreateOperator(
"Concat",
['X_{}'.format(i) for i in range(len(splits))],
['concat_result', 'split_info'],
axis=axis,
add_axis=1
)
self.assertReferenceChecks(
gc, op, splits, lambda *splits: (
np.concatenate(
[np.expand_dims(a, axis) for a in splits],
axis=axis
),
np.array([1] * len(splits))
),
ensure_outputs_are_inferred=True,
)
self.assertDeviceChecks(dc, op, splits, [0, 1])
for i in range(len(splits)):
self.assertGradientChecks(
gc, op, splits, i, [0],
ensure_outputs_are_inferred=True,
)
@serial.given(tensor_splits=_tensor_splits(),
split_as_arg=st.booleans(),
**hu.gcs)
def test_split(self, tensor_splits, split_as_arg, gc, dc):
axis, split_info, splits = tensor_splits
split_as_arg = True
if split_as_arg:
input_names = ['input']
input_tensors = [np.concatenate(splits, axis=axis)]
kwargs = dict(axis=axis, split=split_info)
else:
input_names = ['input', 'split']
input_tensors = [np.concatenate(splits, axis=axis), split_info]
kwargs = dict(axis=axis)
op = core.CreateOperator(
"Split",
input_names,
['X_{}'.format(i) for i in range(len(split_info))],
**kwargs
)
def split_ref(input, split=split_info):
s = np.cumsum([0] + list(split))
return [
np.array(input.take(np.arange(s[i], s[i + 1]), axis=axis))
for i in range(len(split))
]
outputs_with_grad = range(len(split_info))
self.assertReferenceChecks(
gc, op, input_tensors, split_ref,
ensure_outputs_are_inferred=True,
)
self.assertDeviceChecks(dc, op, input_tensors, outputs_with_grad)
self.assertGradientChecks(
gc, op, input_tensors, 0, outputs_with_grad,
ensure_outputs_are_inferred=True,
)
@given(
inputs=hu.lengths_tensor(
dtype=np.float32,
min_value=1,
max_value=11,
allow_empty=True,
),
split_by_scaling_lengths=st.booleans(),
**hu.gcs
)
@settings(deadline=10000)
def test_split_by_lengths(self, inputs, split_by_scaling_lengths, gc, dc):
data, lengths = inputs
len_len = len(lengths)
def _find_factor_simple(x):
for i in [2, 3, 5, 7, 9, 11]:
if x % i == 0:
return i
return x
num_output = _find_factor_simple(len_len)
scaling_factor = 1
if split_by_scaling_lengths:
sum_len = sum(lengths)
sum_scaling_lengths = _find_factor_simple(sum_len)
if sum_scaling_lengths != sum_len and sum_scaling_lengths >= num_output:
scaling_lengths = [1] * (num_output - 1) + [sum_scaling_lengths - num_output + 1]
len_len = len(scaling_lengths)
lengths = np.array(scaling_lengths, dtype=np.int32)
scaling_factor = (sum_len // sum_scaling_lengths) if sum_scaling_lengths else 1
axis = 0
op = core.CreateOperator(
"SplitByLengths",
["data", "lengths"],
['X_{}'.format(i) for i in range(num_output)],
axis=axis,
use_scaling_lengths=split_by_scaling_lengths,
)
def split_by_lengths_ref(data, lengths, num_output=num_output, axis=0):
idxs = np.cumsum([0] + list(lengths)).astype(np.int32)
return [
np.array(
data.take(
np.arange(
scaling_factor * idxs[i * len_len // num_output],
scaling_factor * idxs[(i + 1) * len_len // num_output]
),
axis=axis
)
) for i in range(num_output)
]
outputs_with_grad = range(num_output)
input_tensors = [data, lengths]
self.assertReferenceChecks(
hu.cpu_do, op, input_tensors, split_by_lengths_ref)
self.assertDeviceChecks(dc, op, input_tensors, outputs_with_grad)
self.assertGradientChecks(
hu.cpu_do, op, input_tensors, 0, outputs_with_grad,
input_device_options={"lengths": hu.cpu_do})
if __name__ == "__main__":
unittest.main()
|