1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
import numpy as np
import unittest
from caffe2.proto import caffe2_pb2
from caffe2.python import workspace, core, model_helper, brew, test_util
class CopyOpsTest(test_util.TestCase):
def tearDown(self):
# Reset workspace after each test
# Otherwise, the multi-GPU test will use previously created tensors,
# which may have been placed on the wrong device
workspace.ResetWorkspace()
def run_test_copy_gradient(self, device_opt):
model = model_helper.ModelHelper(name="copy_test")
with core.DeviceScope(device_opt):
x = model.net.AddExternalInputs("x")
y = model.Copy(x, "y")
loss = model.AveragedLoss(y, "loss")
gradient_map = model.AddGradientOperators([loss])
workspace.FeedBlob(x, np.random.rand(32).astype(np.float32))
workspace.RunNetOnce(model.param_init_net)
workspace.RunNetOnce(model.net)
self.assertTrue(np.array_equal(
workspace.FetchBlob(x),
workspace.FetchBlob(y),
))
self.assertTrue(np.array_equal(
workspace.FetchBlob(gradient_map[x]),
workspace.FetchBlob(gradient_map[y]),
))
def test_copy_gradient_cpu(self):
self.run_test_copy_gradient(core.DeviceOption(caffe2_pb2.CPU, 0))
@unittest.skipIf(workspace.NumGpuDevices() < 1, "Need at least 1 GPU.")
def test_copy_gradient_gpu(self):
self.run_test_copy_gradient(core.DeviceOption(workspace.GpuDeviceType, 0))
@unittest.skipIf(workspace.NumGpuDevices() < 2, "Need at least 2 GPU.")
def test_copy_gradient_multiple_gpus(self):
model = model_helper.ModelHelper(name="copy_test")
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU, 0)):
x_cpu = model.net.AddExternalInputs("x_cpu")
with core.DeviceScope(core.DeviceOption(workspace.GpuDeviceType, 0)):
x_gpu_1 = model.CopyCPUToGPU(x_cpu, "x_gpu_1")
with core.DeviceScope(core.DeviceOption(workspace.GpuDeviceType, 1)):
x_gpu_2 = model.Copy(x_gpu_1, "x_gpu_2")
loss = model.AveragedLoss(x_gpu_2, "loss")
gradient_map = model.AddGradientOperators([loss])
workspace.FeedBlob("x_cpu", np.random.rand(32).astype(np.float32))
workspace.RunNetOnce(model.param_init_net)
workspace.RunNetOnce(model.net)
self.assertTrue(np.array_equal(
workspace.FetchBlob("x_gpu_1"),
workspace.FetchBlob("x_gpu_2"),
))
self.assertTrue(np.array_equal(
workspace.FetchBlob(gradient_map["x_gpu_1"]),
workspace.FetchBlob(gradient_map["x_gpu_2"]),
))
def get_op_with_output(model, output_blob_name):
for op in model.net.Proto().op:
if len(op.output) == 1 and op.output[0] == output_blob_name:
return op
return None
self.assertEqual(
get_op_with_output(model, "x_gpu_2_grad").device_option,
core.DeviceOption(workspace.GpuDeviceType, 1),
)
self.assertEqual(
get_op_with_output(model, "x_cpu_grad").device_option,
core.DeviceOption(workspace.GpuDeviceType, 0),
)
@unittest.skipIf(workspace.NumGpuDevices() < 1, "Need at least 1 GPU.")
def test_cpu2gpu_gpu2cpu_sparse_gradients(self):
model = model_helper.ModelHelper(name="copy_test")
v = model.param_init_net.UniformFill([], ["v"], shape=[16, 4])
indices = model.param_init_net.UniformFill([], ["v"], shape=[16, 4])
cpu_opt = core.DeviceOption(caffe2_pb2.CPU, 0)
gpu_opt = core.DeviceOption(workspace.GpuDeviceType, 0)
with core.DeviceScope(gpu_opt):
vcpu = model.CopyGPUToCPU(v, "vcpu")
with core.DeviceScope(cpu_opt):
g = model.Gather([vcpu, indices], "g")
with core.DeviceScope(gpu_opt):
ggpu = model.CopyCPUToGPU(g, "ggpu")
f = brew.fc(model, ggpu, "out", dim_in=4, dim_out=6)
(softmax, loss) = model.SoftmaxWithLoss(
[f, "label"],
["softmax", "loss"],
)
gradient_map = model.AddGradientOperators([loss])
self.assertTrue("v" in gradient_map)
self.assertTrue(isinstance(gradient_map['v'], core.GradientSlice))
@unittest.skipIf(workspace.NumGpuDevices() < 1, "Need at least 1 GPU.")
def test_cpu2gpu_gpu2cpu_gradients(self):
model = model_helper.ModelHelper(name="copy_test")
batch = 32
cpu_opt = core.DeviceOption(caffe2_pb2.CPU, 0)
gpu_opt = core.DeviceOption(workspace.GpuDeviceType, 0)
with core.NameScope("cpu"):
with core.DeviceScope(cpu_opt):
x_cpu = brew.fc(model, 'data', 'x_cpu', 16, 8)
with core.NameScope("gpu_0"):
with core.DeviceScope(gpu_opt):
x_gpu = model.CopyCPUToGPU(x_cpu, "x_gpu")
pred_gpu = brew.fc(model, x_gpu, "pred_gpu", 8, 4)
pred_cpu = model.CopyGPUToCPU(pred_gpu, "pred_cpu")
with core.DeviceScope(cpu_opt):
with core.NameScope("cpu"):
(softmax, loss) = model.SoftmaxWithLoss(
[pred_cpu, "label"],
["softmax", "loss"],
)
gradient_map = model.AddGradientOperators([loss])
# Add param updates (for cpu and gpu)
init_net = model.param_init_net
with core.DeviceScope(cpu_opt):
with core.NameScope("cpu"):
ONE = init_net.ConstantFill([], "ONE", shape=[1], value=1.)
LR = init_net.ConstantFill([], "LR", shape=[1], value=-2.0)
for param in model.GetParams():
model.WeightedSum(
[param, ONE, gradient_map[param], LR],
param,
)
with core.NameScope("gpu_0"):
with core.DeviceScope(gpu_opt):
ONE = init_net.ConstantFill([], "ONE", shape=[1], value=1.)
LR = init_net.ConstantFill([], "LR", shape=[1], value=-2.0)
for param in model.GetParams():
model.WeightedSum(
[param, ONE, gradient_map[param], LR],
param,
)
with core.DeviceScope(cpu_opt):
workspace.FeedBlob(
'cpu/data',
np.random.rand(batch, 16).astype(np.float32),
)
workspace.FeedBlob(
'cpu/label',
np.random.randint(4, size=batch).astype(np.int32),
)
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net)
initial_params = {p: workspace.FetchBlob(p) for p in model.GetParams()}
workspace.RunNet(model.net.Proto().name)
updated_params = {p: workspace.FetchBlob(p) for p in model.GetParams()}
for p in model.GetParams():
g = gradient_map[p]
expected = initial_params[p] - 2.0 * workspace.FetchBlob(g)
actual = updated_params[p]
self.assertTrue(
np.array_equal(expected, updated_params[p]),
"Mismatch: {}: {}, {}".format(p, expected, actual),
)
|