File: copy_ops_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (188 lines) | stat: -rw-r--r-- 7,374 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188





import numpy as np

import unittest
from caffe2.proto import caffe2_pb2
from caffe2.python import workspace, core, model_helper, brew, test_util


class CopyOpsTest(test_util.TestCase):

    def tearDown(self):
        # Reset workspace after each test
        # Otherwise, the multi-GPU test will use previously created tensors,
        #   which may have been placed on the wrong device
        workspace.ResetWorkspace()

    def run_test_copy_gradient(self, device_opt):
        model = model_helper.ModelHelper(name="copy_test")
        with core.DeviceScope(device_opt):
            x = model.net.AddExternalInputs("x")
            y = model.Copy(x, "y")
            loss = model.AveragedLoss(y, "loss")
            gradient_map = model.AddGradientOperators([loss])
            workspace.FeedBlob(x, np.random.rand(32).astype(np.float32))
            workspace.RunNetOnce(model.param_init_net)
            workspace.RunNetOnce(model.net)
            self.assertTrue(np.array_equal(
                workspace.FetchBlob(x),
                workspace.FetchBlob(y),
            ))
            self.assertTrue(np.array_equal(
                workspace.FetchBlob(gradient_map[x]),
                workspace.FetchBlob(gradient_map[y]),
            ))

    def test_copy_gradient_cpu(self):
        self.run_test_copy_gradient(core.DeviceOption(caffe2_pb2.CPU, 0))

    @unittest.skipIf(workspace.NumGpuDevices() < 1, "Need at least 1 GPU.")
    def test_copy_gradient_gpu(self):
        self.run_test_copy_gradient(core.DeviceOption(workspace.GpuDeviceType, 0))

    @unittest.skipIf(workspace.NumGpuDevices() < 2, "Need at least 2 GPU.")
    def test_copy_gradient_multiple_gpus(self):
        model = model_helper.ModelHelper(name="copy_test")

        with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU, 0)):
            x_cpu = model.net.AddExternalInputs("x_cpu")

        with core.DeviceScope(core.DeviceOption(workspace.GpuDeviceType, 0)):
            x_gpu_1 = model.CopyCPUToGPU(x_cpu, "x_gpu_1")

        with core.DeviceScope(core.DeviceOption(workspace.GpuDeviceType, 1)):
            x_gpu_2 = model.Copy(x_gpu_1, "x_gpu_2")
            loss = model.AveragedLoss(x_gpu_2, "loss")
            gradient_map = model.AddGradientOperators([loss])

        workspace.FeedBlob("x_cpu", np.random.rand(32).astype(np.float32))
        workspace.RunNetOnce(model.param_init_net)
        workspace.RunNetOnce(model.net)

        self.assertTrue(np.array_equal(
            workspace.FetchBlob("x_gpu_1"),
            workspace.FetchBlob("x_gpu_2"),
        ))
        self.assertTrue(np.array_equal(
            workspace.FetchBlob(gradient_map["x_gpu_1"]),
            workspace.FetchBlob(gradient_map["x_gpu_2"]),
        ))

        def get_op_with_output(model, output_blob_name):
            for op in model.net.Proto().op:
                if len(op.output) == 1 and op.output[0] == output_blob_name:
                    return op
            return None

        self.assertEqual(
            get_op_with_output(model, "x_gpu_2_grad").device_option,
            core.DeviceOption(workspace.GpuDeviceType, 1),
        )
        self.assertEqual(
            get_op_with_output(model, "x_cpu_grad").device_option,
            core.DeviceOption(workspace.GpuDeviceType, 0),
        )

    @unittest.skipIf(workspace.NumGpuDevices() < 1, "Need at least 1 GPU.")
    def test_cpu2gpu_gpu2cpu_sparse_gradients(self):
        model = model_helper.ModelHelper(name="copy_test")
        v = model.param_init_net.UniformFill([], ["v"], shape=[16, 4])
        indices = model.param_init_net.UniformFill([], ["v"], shape=[16, 4])
        cpu_opt = core.DeviceOption(caffe2_pb2.CPU, 0)
        gpu_opt = core.DeviceOption(workspace.GpuDeviceType, 0)

        with core.DeviceScope(gpu_opt):
            vcpu = model.CopyGPUToCPU(v, "vcpu")

        with core.DeviceScope(cpu_opt):
            g = model.Gather([vcpu, indices], "g")

        with core.DeviceScope(gpu_opt):
            ggpu = model.CopyCPUToGPU(g, "ggpu")
            f = brew.fc(model, ggpu, "out", dim_in=4, dim_out=6)
            (softmax, loss) = model.SoftmaxWithLoss(
                [f, "label"],
                ["softmax", "loss"],
            )
        gradient_map = model.AddGradientOperators([loss])
        self.assertTrue("v" in gradient_map)
        self.assertTrue(isinstance(gradient_map['v'], core.GradientSlice))

    @unittest.skipIf(workspace.NumGpuDevices() < 1, "Need at least 1 GPU.")
    def test_cpu2gpu_gpu2cpu_gradients(self):
        model = model_helper.ModelHelper(name="copy_test")

        batch = 32
        cpu_opt = core.DeviceOption(caffe2_pb2.CPU, 0)
        gpu_opt = core.DeviceOption(workspace.GpuDeviceType, 0)

        with core.NameScope("cpu"):
            with core.DeviceScope(cpu_opt):
                x_cpu = brew.fc(model, 'data', 'x_cpu', 16, 8)

        with core.NameScope("gpu_0"):
            with core.DeviceScope(gpu_opt):
                x_gpu = model.CopyCPUToGPU(x_cpu, "x_gpu")
                pred_gpu = brew.fc(model, x_gpu, "pred_gpu", 8, 4)
                pred_cpu = model.CopyGPUToCPU(pred_gpu, "pred_cpu")

        with core.DeviceScope(cpu_opt):
            with core.NameScope("cpu"):
                (softmax, loss) = model.SoftmaxWithLoss(
                    [pred_cpu, "label"],
                    ["softmax", "loss"],
                )

        gradient_map = model.AddGradientOperators([loss])

        # Add param updates (for cpu and gpu)
        init_net = model.param_init_net
        with core.DeviceScope(cpu_opt):
            with core.NameScope("cpu"):
                ONE = init_net.ConstantFill([], "ONE", shape=[1], value=1.)
                LR = init_net.ConstantFill([], "LR", shape=[1], value=-2.0)
                for param in model.GetParams():
                    model.WeightedSum(
                        [param, ONE, gradient_map[param], LR],
                        param,
                    )

        with core.NameScope("gpu_0"):
            with core.DeviceScope(gpu_opt):
                ONE = init_net.ConstantFill([], "ONE", shape=[1], value=1.)
                LR = init_net.ConstantFill([], "LR", shape=[1], value=-2.0)
                for param in model.GetParams():
                    model.WeightedSum(
                        [param, ONE, gradient_map[param], LR],
                        param,
                    )

        with core.DeviceScope(cpu_opt):
            workspace.FeedBlob(
                'cpu/data',
                np.random.rand(batch, 16).astype(np.float32),
            )
            workspace.FeedBlob(
                'cpu/label',
                np.random.randint(4, size=batch).astype(np.int32),
            )

        workspace.RunNetOnce(model.param_init_net)
        workspace.CreateNet(model.net)

        initial_params = {p: workspace.FetchBlob(p) for p in model.GetParams()}
        workspace.RunNet(model.net.Proto().name)
        updated_params = {p: workspace.FetchBlob(p) for p in model.GetParams()}

        for p in model.GetParams():
            g = gradient_map[p]
            expected = initial_params[p] - 2.0 * workspace.FetchBlob(g)
            actual = updated_params[p]
            self.assertTrue(
                np.array_equal(expected, updated_params[p]),
                "Mismatch: {}: {}, {}".format(p, expected, actual),
            )