File: crf_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (140 lines) | stat: -rw-r--r-- 5,315 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140




from caffe2.python import workspace, crf, brew
from caffe2.python.model_helper import ModelHelper
import numpy as np
from scipy.special import logsumexp
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
from hypothesis import given, settings


class TestCRFOp(hu.HypothesisTestCase):

    @given(num_tags=st.integers(2, 4),
           num_words=st.integers(2, 15))
    @settings(deadline=10000)
    def test_crf_with_loss_op(self, num_tags, num_words):
        model = ModelHelper(name='external')
        embeddings_dim = 200
        embeddings = np.random.randn(num_words, embeddings_dim).astype(np.float32)
        transitions = np.random.uniform(
            low=-1, high=1, size=(num_tags + 2, num_tags + 2)
        ).astype(np.float32)
        labels = np.random.randint(num_tags, size=(num_words)).astype(np.int64)
        embeddings_blob, labels_blob, transitions_blob = (
            model.net.AddExternalInputs(
                'embeddings_blob',
                'labels_blob',
                'crf_transitions')
        )
        workspace.FeedBlob(str(embeddings_blob), embeddings)
        workspace.FeedBlob(str(labels_blob), labels)
        workspace.FeedBlob(str(transitions_blob), transitions)
        predictions_blob = brew.fc(
            model,
            embeddings_blob, "fc_0",
            embeddings_dim, num_tags,
            ('UniformFill', {'min': -1.0}, {'max': 1.0}),
            ('UniformFill', {'min': -1.0}, {'max': 1.0})
        )
        crf_layer = crf.CRFWithLoss(model, num_tags, transitions_blob)
        crf_loss = crf_layer.crf_loss(predictions_blob, labels_blob)
        model.net.AddGradientOperators([crf_loss])
        workspace.RunNetOnce(model.param_init_net)
        workspace.RunNetOnce(model.net)
        loss = workspace.FetchBlob(str(crf_loss))
        predictions = workspace.FetchBlob(str(predictions_blob))
        np.testing.assert_allclose(
            loss,
            self._compute_loss_manual(
                predictions, num_tags, labels, transitions
            ),
            atol=0.001,
            rtol=0.001,
            err_msg='CRF LOSS is not matching the reference'
        )

    @given(num_tags=st.integers(1, 4),
           num_words=st.integers(2, 4))
    @settings(deadline=10000)
    def test_crf_gradient(self, num_tags, num_words):
        base_model = ModelHelper(name='base_model')
        transitions = np.random.randn(
            num_tags + 2, num_tags + 2
        ).astype(np.float32)
        predictions = np.random.randn(num_words, 1, num_tags + 2).astype(np.float32)
        initial = np.random.randn(1, num_tags + 2).astype(np.float32)
        predictions_blob, transitions_blob, initial_blob = (
            base_model.net.AddExternalInputs(
                'predictions_blob', 'crf_transitions', 'inital_blob'
            )
        )

        workspace.FeedBlob(str(predictions_blob), predictions)
        workspace.FeedBlob(str(transitions_blob), transitions)
        workspace.FeedBlob(str(initial_blob), initial)

        crf_layer = crf.CRFWithLoss(base_model, num_tags, transitions_blob)
        crf_layer.build_crf_net(
            predictions_blob, initial_blob, transitions_blob
        )
        op = base_model.net._net.op[-1]
        workspace.RunNetOnce(base_model.param_init_net)
        gradients_to_check = (
            index for (index, input_name) in enumerate(op.input)
            if input_name != "crf_net/zero_segment_id"
        )

        inputs = [workspace.FetchBlob(name) for name in op.input]
        for param in gradients_to_check:
            self.assertGradientChecks(
                device_option=hu.cpu_do,
                op=op,
                inputs=inputs,
                outputs_to_check=param,
                outputs_with_grads=[1],
                threshold=0.05,
                stepsize=0.001,
            )

    def _compute_loss_manual(self, predictions, num_tags, labels, transitions):
        low_score = -1000
        b_s = np.array(
            [[low_score] * num_tags + [0, low_score]]
        ).astype(np.float32)
        e_s = np.array(
            [[low_score] * num_tags + [low_score, 0]]
        ).astype(np.float32)
        predictions = np.concatenate(
            [predictions, low_score * np.ones((predictions.shape[0], 2))],
            axis=1
        )
        predictions = np.concatenate(
            [b_s, predictions, e_s],
            axis=0
        )
        b_id = np.array([num_tags], dtype=np.int32)
        e_id = np.array([num_tags + 1], dtype=np.int32)
        labels = np.concatenate(
            [b_id, labels, e_id],
            axis=0
        )
        curr_state = predictions[0]
        input_states = predictions[1:]

        for input_state in input_states:
            prev = np.expand_dims(curr_state, axis=1)
            curr_input = np.expand_dims(input_state, axis=0)
            curr_state = logsumexp(prev + curr_input + transitions, axis=0)

        total_score = logsumexp(curr_state, axis=0)
        # Compute best path score
        unary_scores = sum(w[labels[i]] for i, w in enumerate(predictions))
        binary_scores = sum(
            transitions[a][b] for a, b in zip(labels[:-1], labels[1:])
        )
        loss = total_score - (binary_scores + unary_scores)
        return loss