1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
from caffe2.python import core
from hypothesis import given
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
import unittest
def sigmoid(x):
return 1.0 / (1.0 + np.exp(-x))
def sigmoid_cross_entropy_with_logits(x, z):
return np.maximum(x, 0) - x * z + np.log(1 + np.exp(-np.abs(x)))
def sigmoid_cross_entropy_with_logits_grad(x, z):
return z - sigmoid(x)
def sigmoid_cross_entropy_with_logits_with_log_D_trick(x, z):
return -(2 * z - 1.) * np.log(sigmoid(x))
def sigmoid_cross_entropy_with_logits_with_log_D_trick_grad(x, z):
return (2 * z - 1.) * (1 - sigmoid(x))
def unjoined_sigmoid_cross_entropy(x, z):
return -z * x + (1. - z) * np.maximum(x, 0) \
+ (1. - z) * np.log(1 + np.exp(-np.abs(x)))
def unjoined_sigmoid_cross_entropy_grad(x, z):
return z - (1. - z) / (1. + np.exp(-x))
class TestCrossEntropyOps(hu.HypothesisTestCase):
@given(
inputs=st.lists(
elements=st.integers(min_value=1, max_value=5),
min_size=1,
max_size=2,
).flatmap(
lambda shape: st.tuples(
hu.arrays(
dims=shape,
elements=st.one_of(
hu.floats(min_value=-1.0, max_value=-0.1),
hu.floats(min_value=0.1, max_value=1.0),
)),
hu.arrays(
dims=shape,
elements=st.sampled_from([0.0, 1.0]),
),
)
),
options=st.one_of(
st.tuples(st.just(True), st.just(False)),
st.tuples(st.just(False), st.just(True)),
st.tuples(st.just(False), st.just(False))
),
**hu.gcs
)
def test_sigmoid_cross_entropy_with_logits(
self, inputs, options, gc, dc
):
logits, targets = inputs
log_D_trick, unjoined_lr_loss = options
def sigmoid_xentr_logit_ref(logits, targets):
if unjoined_lr_loss:
s = unjoined_sigmoid_cross_entropy(logits, targets)
else:
s = (
sigmoid_cross_entropy_with_logits(logits, targets)
if not log_D_trick else
sigmoid_cross_entropy_with_logits_with_log_D_trick(
logits, targets
)
)
m = np.mean(s, axis=len(logits.shape) - 1)
return (m, )
def sigmoid_xentr_logit_grad_ref(g_out, outputs, fwd_inputs):
fwd_logits, fwd_targets = fwd_inputs
inner_size = fwd_logits.shape[-1]
if unjoined_lr_loss:
m = unjoined_sigmoid_cross_entropy_grad(logits, targets)
else:
m = (
sigmoid_cross_entropy_with_logits_grad(fwd_logits, fwd_targets)
if not log_D_trick else
sigmoid_cross_entropy_with_logits_with_log_D_trick_grad(
fwd_logits, fwd_targets
)
)
# m = fwd_targets - sigmoid(fwd_logits)
g_in = -np.expand_dims(g_out, axis=-1) * m / inner_size
return (g_in, None)
op = core.CreateOperator(
'SigmoidCrossEntropyWithLogits', ['logits', 'targets'],
['xentropy'],
log_D_trick=log_D_trick,
unjoined_lr_loss=unjoined_lr_loss
)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[logits, targets],
reference=sigmoid_xentr_logit_ref,
output_to_grad='xentropy',
grad_reference=sigmoid_xentr_logit_grad_ref)
@given(
log_D_trick=st.just(False),
**hu.gcs_cpu_only
)
def test_cross_entropy_and_unjoied_cross_entropy_relation(
self, log_D_trick, gc, dc
):
logits = np.array([1.4720, 0.3500, -0.6529, -1.1908, 0.8357,
-1.0774, -0.3395, -0.2469, 0.6708, -1.8332], dtype='f')
targets = np.array([1., 1., 1., 1., 1., 1., 0., 0., 0., 0.], dtype='f')
lr_size = targets.size
unjoined_lr_loss = False
def sigmoid_xentr_logit_ref(logits, targets):
if unjoined_lr_loss:
s = unjoined_sigmoid_cross_entropy(logits, targets)
else:
s = sigmoid_cross_entropy_with_logits(logits, targets)
m = np.mean(s, axis=len(logits.shape) - 1)
return (m, )
def sigmoid_xentr_logit_grad_ref(g_out, outputs, fwd_inputs):
fwd_logits, fwd_targets = fwd_inputs
inner_size = fwd_logits.shape[-1]
if unjoined_lr_loss:
m = unjoined_sigmoid_cross_entropy_grad(logits, targets)
else:
m = sigmoid_cross_entropy_with_logits_grad(
fwd_logits, fwd_targets)
# m = fwd_targets - sigmoid(fwd_logits)
g_in = -np.expand_dims(g_out, axis=-1) * m / inner_size
return (g_in, None)
op = core.CreateOperator(
'SigmoidCrossEntropyWithLogits', ['logits', 'targets'],
['xentropy'],
log_D_trick=log_D_trick,
unjoined_lr_loss=unjoined_lr_loss
)
output_lr = self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[logits, targets],
reference=sigmoid_xentr_logit_ref,
output_to_grad='xentropy',
grad_reference=sigmoid_xentr_logit_grad_ref)
# Unjoined dataset where labels change later
logits = np.array([1.4720, 0.3500, -0.6529, -1.1908, 0.8357,
-1.0774, -0.3395, -0.2469, 0.6708, -1.8332, 1.4720, 0.3500,
-0.6529, -1.1908, 0.8357, -1.0774], dtype='f')
targets = np.array([0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 1., 1., 1., 1., 1., 1.], dtype='f')
unjoined_lr_loss = True
unjoined_lr_size = targets.size
op = core.CreateOperator(
'SigmoidCrossEntropyWithLogits', ['logits', 'targets'],
['xentropy'],
log_D_trick=log_D_trick,
unjoined_lr_loss=unjoined_lr_loss
)
outputs_unjoined_lr = self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[logits, targets],
reference=sigmoid_xentr_logit_ref,
output_to_grad='xentropy',
grad_reference=sigmoid_xentr_logit_grad_ref)
self.assertAlmostEqual(
output_lr[0].item(0) * lr_size / unjoined_lr_size,
outputs_unjoined_lr[0].item(0),
delta=0.0001)
@given(
inputs=st.lists(
elements=st.integers(min_value=1, max_value=5),
min_size=1,
max_size=2,
).flatmap(
lambda shape: st.tuples(
hu.arrays(
dims=shape,
elements=st.one_of(
hu.floats(min_value=-1.0, max_value=-0.1),
hu.floats(min_value=0.1, max_value=1.0),
)),
hu.arrays(
dims=shape,
elements=st.sampled_from([0.0, 1.0]),
),
hu.arrays(
dims=shape,
elements=hu.floats(min_value=0.1, max_value=1.0),
),
)
),
**hu.gcs
)
def test_weighted_sigmoid_cross_entropy_with_logits(self, inputs, gc, dc):
logits, targets, weights = inputs
def weighted_sigmoid_xentr_logit_ref(logits, targets, weights):
s = sigmoid_cross_entropy_with_logits(logits, targets)
s = np.multiply(s, weights)
m = np.mean(s, axis=len(logits.shape) - 1)
return (m, )
def weighted_sigmoid_xentr_logit_grad_ref(g_out, outputs, fwd_inputs):
fwd_logits, fwd_targets, fwd_weights = fwd_inputs
inner_size = fwd_logits.shape[-1]
m = fwd_targets - sigmoid(fwd_logits)
m = np.multiply(m, weights)
g_in = -np.expand_dims(g_out, axis=-1) * m / inner_size
return (g_in, None, None)
op = core.CreateOperator(
'WeightedSigmoidCrossEntropyWithLogits',
['logits', 'targets', 'weights'],
['xentropy'])
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[logits, targets, weights],
reference=weighted_sigmoid_xentr_logit_ref,
output_to_grad='xentropy',
grad_reference=weighted_sigmoid_xentr_logit_grad_ref)
@given(n=st.integers(2, 10),
b=st.integers(1, 5),
**hu.gcs_cpu_only)
def test_soft_label_cross_entropy(self, n, b, gc, dc):
# Initialize X and add 1e-2 for numerical stability
X = np.random.rand(b, n).astype(np.float32)
X = X + 1e-2
for i in range(b):
X[i] = X[i] / np.sum(X[i])
# Initialize label
label = np.random.rand(b, n).astype(np.float32)
for i in range(b):
label[i] = label[i] / np.sum(label[i])
# Reference implementation of cross entropy with soft labels
def soft_label_xentr_ref(X, label):
xent = [np.sum((-label[j][i] * np.log(max(X[j][i], 1e-20))
for i in range(len(X[0])))) for j in range(b)]
return (xent,)
op = core.CreateOperator("CrossEntropy", ["X", "label"], ["Y"])
# TODO(surya) Once CrossEntropyOp is ported to GPU, add the respective
# tests to this unit test.
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[X, label],
reference=soft_label_xentr_ref,
)
self.assertGradientChecks(
gc, op, [X, label], 0, [0], stepsize=1e-4, threshold=1e-2)
if __name__ == "__main__":
import unittest
unittest.main()
|