File: cross_entropy_ops_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (287 lines) | stat: -rw-r--r-- 10,085 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287




from caffe2.python import core
from hypothesis import given
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np

import unittest

def sigmoid(x):
    return 1.0 / (1.0 + np.exp(-x))


def sigmoid_cross_entropy_with_logits(x, z):
    return np.maximum(x, 0) - x * z + np.log(1 + np.exp(-np.abs(x)))


def sigmoid_cross_entropy_with_logits_grad(x, z):
    return z - sigmoid(x)


def sigmoid_cross_entropy_with_logits_with_log_D_trick(x, z):
    return -(2 * z - 1.) * np.log(sigmoid(x))


def sigmoid_cross_entropy_with_logits_with_log_D_trick_grad(x, z):
    return (2 * z - 1.) * (1 - sigmoid(x))


def unjoined_sigmoid_cross_entropy(x, z):
    return -z * x + (1. - z) * np.maximum(x, 0) \
        + (1. - z) * np.log(1 + np.exp(-np.abs(x)))


def unjoined_sigmoid_cross_entropy_grad(x, z):
    return z - (1. - z) / (1. + np.exp(-x))


class TestCrossEntropyOps(hu.HypothesisTestCase):
    @given(
        inputs=st.lists(
            elements=st.integers(min_value=1, max_value=5),
            min_size=1,
            max_size=2,
        ).flatmap(
            lambda shape: st.tuples(
                hu.arrays(
                    dims=shape,
                    elements=st.one_of(
                        hu.floats(min_value=-1.0, max_value=-0.1),
                        hu.floats(min_value=0.1, max_value=1.0),
                    )),
                hu.arrays(
                    dims=shape,
                    elements=st.sampled_from([0.0, 1.0]),
                ),
            )
        ),
        options=st.one_of(
            st.tuples(st.just(True), st.just(False)),
            st.tuples(st.just(False), st.just(True)),
            st.tuples(st.just(False), st.just(False))
        ),
        **hu.gcs
    )
    def test_sigmoid_cross_entropy_with_logits(
        self, inputs, options, gc, dc
    ):
        logits, targets = inputs
        log_D_trick, unjoined_lr_loss = options

        def sigmoid_xentr_logit_ref(logits, targets):
            if unjoined_lr_loss:
                s = unjoined_sigmoid_cross_entropy(logits, targets)
            else:
                s = (
                    sigmoid_cross_entropy_with_logits(logits, targets)
                    if not log_D_trick else
                    sigmoid_cross_entropy_with_logits_with_log_D_trick(
                        logits, targets
                    )
                )
            m = np.mean(s, axis=len(logits.shape) - 1)
            return (m, )

        def sigmoid_xentr_logit_grad_ref(g_out, outputs, fwd_inputs):
            fwd_logits, fwd_targets = fwd_inputs
            inner_size = fwd_logits.shape[-1]
            if unjoined_lr_loss:
                m = unjoined_sigmoid_cross_entropy_grad(logits, targets)
            else:
                m = (
                    sigmoid_cross_entropy_with_logits_grad(fwd_logits, fwd_targets)
                    if not log_D_trick else
                    sigmoid_cross_entropy_with_logits_with_log_D_trick_grad(
                        fwd_logits, fwd_targets
                    )
                )
            # m = fwd_targets - sigmoid(fwd_logits)
            g_in = -np.expand_dims(g_out, axis=-1) * m / inner_size
            return (g_in, None)

        op = core.CreateOperator(
            'SigmoidCrossEntropyWithLogits', ['logits', 'targets'],
            ['xentropy'],
            log_D_trick=log_D_trick,
            unjoined_lr_loss=unjoined_lr_loss
        )
        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[logits, targets],
            reference=sigmoid_xentr_logit_ref,
            output_to_grad='xentropy',
            grad_reference=sigmoid_xentr_logit_grad_ref)

    @given(
        log_D_trick=st.just(False),
        **hu.gcs_cpu_only
    )
    def test_cross_entropy_and_unjoied_cross_entropy_relation(
        self, log_D_trick, gc, dc
    ):
        logits = np.array([1.4720, 0.3500, -0.6529, -1.1908, 0.8357,
                    -1.0774, -0.3395, -0.2469, 0.6708, -1.8332], dtype='f')
        targets = np.array([1., 1., 1., 1., 1., 1., 0., 0., 0., 0.], dtype='f')
        lr_size = targets.size
        unjoined_lr_loss = False

        def sigmoid_xentr_logit_ref(logits, targets):
            if unjoined_lr_loss:
                s = unjoined_sigmoid_cross_entropy(logits, targets)
            else:
                s = sigmoid_cross_entropy_with_logits(logits, targets)
            m = np.mean(s, axis=len(logits.shape) - 1)
            return (m, )

        def sigmoid_xentr_logit_grad_ref(g_out, outputs, fwd_inputs):
            fwd_logits, fwd_targets = fwd_inputs
            inner_size = fwd_logits.shape[-1]
            if unjoined_lr_loss:
                m = unjoined_sigmoid_cross_entropy_grad(logits, targets)
            else:
                m = sigmoid_cross_entropy_with_logits_grad(
                    fwd_logits, fwd_targets)

            # m = fwd_targets - sigmoid(fwd_logits)
            g_in = -np.expand_dims(g_out, axis=-1) * m / inner_size
            return (g_in, None)

        op = core.CreateOperator(
            'SigmoidCrossEntropyWithLogits', ['logits', 'targets'],
            ['xentropy'],
            log_D_trick=log_D_trick,
            unjoined_lr_loss=unjoined_lr_loss
        )
        output_lr = self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[logits, targets],
            reference=sigmoid_xentr_logit_ref,
            output_to_grad='xentropy',
            grad_reference=sigmoid_xentr_logit_grad_ref)

        # Unjoined dataset where labels change later
        logits = np.array([1.4720, 0.3500, -0.6529, -1.1908, 0.8357,
                    -1.0774, -0.3395, -0.2469, 0.6708, -1.8332, 1.4720, 0.3500,
                    -0.6529, -1.1908, 0.8357, -1.0774], dtype='f')
        targets = np.array([0., 0., 0., 0., 0., 0., 0., 0., 0.,
                            0., 1., 1., 1., 1., 1., 1.], dtype='f')
        unjoined_lr_loss = True
        unjoined_lr_size = targets.size

        op = core.CreateOperator(
            'SigmoidCrossEntropyWithLogits', ['logits', 'targets'],
            ['xentropy'],
            log_D_trick=log_D_trick,
            unjoined_lr_loss=unjoined_lr_loss
        )
        outputs_unjoined_lr = self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[logits, targets],
            reference=sigmoid_xentr_logit_ref,
            output_to_grad='xentropy',
            grad_reference=sigmoid_xentr_logit_grad_ref)

        self.assertAlmostEqual(
            output_lr[0].item(0) * lr_size / unjoined_lr_size,
            outputs_unjoined_lr[0].item(0),
            delta=0.0001)

    @given(
        inputs=st.lists(
            elements=st.integers(min_value=1, max_value=5),
            min_size=1,
            max_size=2,
        ).flatmap(
            lambda shape: st.tuples(
                hu.arrays(
                    dims=shape,
                    elements=st.one_of(
                        hu.floats(min_value=-1.0, max_value=-0.1),
                        hu.floats(min_value=0.1, max_value=1.0),
                    )),
                hu.arrays(
                    dims=shape,
                    elements=st.sampled_from([0.0, 1.0]),
                ),
                hu.arrays(
                    dims=shape,
                    elements=hu.floats(min_value=0.1, max_value=1.0),
                ),
            )
        ),
        **hu.gcs
    )
    def test_weighted_sigmoid_cross_entropy_with_logits(self, inputs, gc, dc):
        logits, targets, weights = inputs

        def weighted_sigmoid_xentr_logit_ref(logits, targets, weights):
            s = sigmoid_cross_entropy_with_logits(logits, targets)
            s = np.multiply(s, weights)
            m = np.mean(s, axis=len(logits.shape) - 1)
            return (m, )

        def weighted_sigmoid_xentr_logit_grad_ref(g_out, outputs, fwd_inputs):
            fwd_logits, fwd_targets, fwd_weights = fwd_inputs
            inner_size = fwd_logits.shape[-1]
            m = fwd_targets - sigmoid(fwd_logits)
            m = np.multiply(m, weights)
            g_in = -np.expand_dims(g_out, axis=-1) * m / inner_size
            return (g_in, None, None)

        op = core.CreateOperator(
            'WeightedSigmoidCrossEntropyWithLogits',
            ['logits', 'targets', 'weights'],
            ['xentropy'])
        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[logits, targets, weights],
            reference=weighted_sigmoid_xentr_logit_ref,
            output_to_grad='xentropy',
            grad_reference=weighted_sigmoid_xentr_logit_grad_ref)

    @given(n=st.integers(2, 10),
           b=st.integers(1, 5),
           **hu.gcs_cpu_only)
    def test_soft_label_cross_entropy(self, n, b, gc, dc):
        # Initialize X and add 1e-2 for numerical stability
        X = np.random.rand(b, n).astype(np.float32)
        X = X + 1e-2
        for i in range(b):
            X[i] = X[i] / np.sum(X[i])

        # Initialize label
        label = np.random.rand(b, n).astype(np.float32)
        for i in range(b):
            label[i] = label[i] / np.sum(label[i])

        # Reference implementation of cross entropy with soft labels
        def soft_label_xentr_ref(X, label):
            xent = [np.sum((-label[j][i] * np.log(max(X[j][i], 1e-20))
                            for i in range(len(X[0])))) for j in range(b)]
            return (xent,)

        op = core.CreateOperator("CrossEntropy", ["X", "label"], ["Y"])

        # TODO(surya) Once CrossEntropyOp is ported to GPU, add the respective
        # tests to this unit test.
        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[X, label],
            reference=soft_label_xentr_ref,
        )

        self.assertGradientChecks(
            gc, op, [X, label], 0, [0], stepsize=1e-4, threshold=1e-2)

if __name__ == "__main__":
    import unittest
    unittest.main()