1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
from caffe2.python import core
from hypothesis import given, settings
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
import hypothesis.strategies as st
import numpy as np
import unittest
class TestCTCGreedyDecoderOp(serial.SerializedTestCase):
@given(
batch=st.sampled_from([2, 4, 128, 256]),
max_time=st.sampled_from([2, 10, 30, 50]),
num_classes=st.sampled_from([2, 10, 26, 40]),
merge_repeated=st.sampled_from([True, False]),
**hu.gcs_cpu_only
)
@settings(deadline=10000)
def test_ctc_greedy_decoder(
self, batch, max_time,
num_classes, merge_repeated, gc, dc
):
def input_generater():
inputs = np.random.rand(max_time, batch, num_classes)\
.astype(np.float32)
seq_len = np.random.randint(1, max_time + 1, size=batch)\
.astype(np.int32)
return inputs, seq_len
def ref_ctc_decoder(inputs, seq_len):
merge = merge_repeated
output_len = np.array([]).astype(np.int32)
val = np.array([]).astype(np.int32)
for i in range(batch):
prev_id = 0
t_dec = 0
len_i = seq_len[i] if seq_len is not None else max_time
for t in range(len_i):
max_id = np.argmax(inputs[t, i, :])
if max_id == 0:
prev_id = max_id
continue
if max_id == prev_id and merge:
prev_id = max_id
continue
t_dec += 1
val = np.append(val, max_id)
prev_id = max_id
output_len = np.append(output_len, t_dec)
return [output_len, val]
def ref_ctc_decoder_max_time(inputs):
return ref_ctc_decoder(inputs, None)
inputs, seq_len = input_generater()
op = core.CreateOperator('CTCGreedyDecoder',
['INPUTS', 'SEQ_LEN'],
['OUTPUT_LEN', 'VALUES'],
merge_repeated=merge_repeated)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[inputs, seq_len],
reference=ref_ctc_decoder,
)
op_1 = core.CreateOperator('CTCGreedyDecoder',
['INPUTS'],
['OUTPUT_LEN', 'VALUES'],
merge_repeated=merge_repeated)
self.assertReferenceChecks(
device_option=gc,
op=op_1,
inputs=[inputs],
reference=ref_ctc_decoder_max_time,
)
@given(
batch=st.sampled_from([2, 4, 128, 256]),
max_time=st.sampled_from([2, 10, 30, 50]),
num_classes=st.sampled_from([2, 10, 26, 40]),
**hu.gcs_cpu_only
)
@settings(deadline=10000)
def test_ctc_greedy_decoder_no_merge_arg(
self, batch, max_time,
num_classes, gc, dc
):
def input_generater():
inputs = np.random.rand(max_time, batch, num_classes)\
.astype(np.float32)
seq_len = np.random.randint(1, max_time + 1, size=batch)\
.astype(np.int32)
return inputs, seq_len
def ref_ctc_decoder_no_merge_arg(inputs, seq_len):
merge = True
output_len = np.array([]).astype(np.int32)
val = np.array([]).astype(np.int32)
for i in range(batch):
prev_id = 0
t_dec = 0
len_i = seq_len[i] if seq_len is not None else max_time
for t in range(len_i):
max_id = np.argmax(inputs[t, i, :])
if max_id == 0:
prev_id = max_id
continue
if max_id == prev_id and merge:
prev_id = max_id
continue
t_dec += 1
val = np.append(val, max_id)
prev_id = max_id
output_len = np.append(output_len, t_dec)
return [output_len, val]
def ref_ctc_decoder_max_time(inputs):
return ref_ctc_decoder_no_merge_arg(inputs, None)
inputs, seq_len = input_generater()
op = core.CreateOperator('CTCGreedyDecoder',
['INPUTS'],
['OUTPUT_LEN', 'VALUES'])
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[inputs],
reference=ref_ctc_decoder_max_time,
)
if __name__ == "__main__":
import random
random.seed(2603)
unittest.main()
|