File: cudnn_recurrent_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (152 lines) | stat: -rw-r--r-- 5,817 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152





from caffe2.python import model_helper, workspace, core, rnn_cell
from future.utils import viewitems
import numpy as np

import unittest


@unittest.skipIf(not workspace.has_gpu_support, "No gpu support.")
class TestLSTMs(unittest.TestCase):

    def testEqualToCudnn(self):
        with core.DeviceScope(core.DeviceOption(workspace.GpuDeviceType)):
            T = 8
            batch_size = 4
            input_dim = 8
            hidden_dim = 31

            workspace.FeedBlob(
                "seq_lengths",
                np.array([T] * batch_size, dtype=np.int32)
            )
            workspace.FeedBlob("target", np.zeros(
                [T, batch_size, hidden_dim], dtype=np.float32
            ))
            workspace.FeedBlob("hidden_init", np.zeros(
                [1, batch_size, hidden_dim], dtype=np.float32
            ))
            workspace.FeedBlob("cell_init", np.zeros(
                [1, batch_size, hidden_dim], dtype=np.float32
            ))

            own_model = model_helper.ModelHelper(name="own_lstm")

            input_shape = [T, batch_size, input_dim]
            cudnn_model = model_helper.ModelHelper(name="cudnn_lstm")
            input_blob = cudnn_model.param_init_net.UniformFill(
                [], "input", shape=input_shape)
            workspace.FeedBlob("CUDNN/hidden_init_cudnn", np.zeros(
                [1, batch_size, hidden_dim], dtype=np.float32
            ))
            workspace.FeedBlob("CUDNN/cell_init_cudnn", np.zeros(
                [1, batch_size, hidden_dim], dtype=np.float32
            ))

            cudnn_output, cudnn_last_hidden, cudnn_last_state, param_extract = rnn_cell.cudnn_LSTM(
                model=cudnn_model,
                input_blob=input_blob,
                initial_states=("hidden_init_cudnn", "cell_init_cudnn"),
                dim_in=input_dim,
                dim_out=hidden_dim,
                scope="CUDNN",
                return_params=True,
            )
            cudnn_loss = cudnn_model.AveragedLoss(
                cudnn_model.SquaredL2Distance(
                    [cudnn_output, "target"], "CUDNN/dist"
                ), "CUDNN/loss"
            )

            own_output, own_last_hidden, _, own_last_state, own_params = rnn_cell.LSTM(
                model=own_model,
                input_blob=input_blob,
                seq_lengths="seq_lengths",
                initial_states=("hidden_init", "cell_init"),
                dim_in=input_dim,
                dim_out=hidden_dim,
                scope="OWN",
                return_params=True,
            )
            own_loss = own_model.AveragedLoss(
                own_model.SquaredL2Distance([own_output, "target"], "OWN/dist"),
                "OWN/loss"
            )

            # Add gradients
            cudnn_model.AddGradientOperators([cudnn_loss])
            own_model.AddGradientOperators([own_loss])

            # Add parameter updates
            LR = cudnn_model.param_init_net.ConstantFill(
                [], shape=[1], value=0.01
            )
            ONE = cudnn_model.param_init_net.ConstantFill(
                [], shape=[1], value=1.0
            )
            for param in cudnn_model.GetParams():
                cudnn_model.WeightedSum(
                    [param, ONE, cudnn_model.param_to_grad[param], LR], param
                )
            for param in own_model.GetParams():
                own_model.WeightedSum(
                    [param, ONE, own_model.param_to_grad[param], LR], param
                )

            # Copy states over
            own_model.net.Copy(own_last_hidden, "hidden_init")
            own_model.net.Copy(own_last_state, "cell_init")
            cudnn_model.net.Copy(cudnn_last_hidden, "CUDNN/hidden_init_cudnn")
            cudnn_model.net.Copy(cudnn_last_state, "CUDNN/cell_init_cudnn")

            workspace.RunNetOnce(cudnn_model.param_init_net)
            workspace.CreateNet(cudnn_model.net)

            ##
            ##  CUDNN LSTM MODEL EXECUTION
            ##
            # Get initial values from CuDNN LSTM so we can feed them
            # to our own.
            (param_extract_net, param_extract_mapping) = param_extract
            workspace.RunNetOnce(param_extract_net)
            cudnn_lstm_params = {
                input_type: {
                    k: workspace.FetchBlob(v[0])
                    for k, v in viewitems(pars)
                }
                for input_type, pars in viewitems(param_extract_mapping)
            }

            # Run the model 3 times, so that some parameter updates are done
            workspace.RunNet(cudnn_model.net.Proto().name, 3)

            ##
            ## OWN LSTM MODEL EXECUTION
            ##
            # Map the cuDNN parameters to our own
            workspace.RunNetOnce(own_model.param_init_net)
            rnn_cell.InitFromLSTMParams(own_params, cudnn_lstm_params)

            # Run the model 3 times, so that some parameter updates are done
            workspace.CreateNet(own_model.net)
            workspace.RunNet(own_model.net.Proto().name, 3)

            ##
            ## COMPARE RESULTS
            ##
            # Then compare that final results after 3 runs are equal
            own_output_data = workspace.FetchBlob(own_output)
            own_last_hidden = workspace.FetchBlob(own_last_hidden)
            own_loss = workspace.FetchBlob(own_loss)

            cudnn_output_data = workspace.FetchBlob(cudnn_output)
            cudnn_last_hidden = workspace.FetchBlob(cudnn_last_hidden)
            cudnn_loss = workspace.FetchBlob(cudnn_loss)

            self.assertTrue(np.allclose(own_output_data, cudnn_output_data))
            self.assertTrue(np.allclose(own_last_hidden, cudnn_last_hidden))
            self.assertTrue(np.allclose(own_loss, cudnn_loss))