1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
from caffe2.python import model_helper, workspace, core, rnn_cell
from future.utils import viewitems
import numpy as np
import unittest
@unittest.skipIf(not workspace.has_gpu_support, "No gpu support.")
class TestLSTMs(unittest.TestCase):
def testEqualToCudnn(self):
with core.DeviceScope(core.DeviceOption(workspace.GpuDeviceType)):
T = 8
batch_size = 4
input_dim = 8
hidden_dim = 31
workspace.FeedBlob(
"seq_lengths",
np.array([T] * batch_size, dtype=np.int32)
)
workspace.FeedBlob("target", np.zeros(
[T, batch_size, hidden_dim], dtype=np.float32
))
workspace.FeedBlob("hidden_init", np.zeros(
[1, batch_size, hidden_dim], dtype=np.float32
))
workspace.FeedBlob("cell_init", np.zeros(
[1, batch_size, hidden_dim], dtype=np.float32
))
own_model = model_helper.ModelHelper(name="own_lstm")
input_shape = [T, batch_size, input_dim]
cudnn_model = model_helper.ModelHelper(name="cudnn_lstm")
input_blob = cudnn_model.param_init_net.UniformFill(
[], "input", shape=input_shape)
workspace.FeedBlob("CUDNN/hidden_init_cudnn", np.zeros(
[1, batch_size, hidden_dim], dtype=np.float32
))
workspace.FeedBlob("CUDNN/cell_init_cudnn", np.zeros(
[1, batch_size, hidden_dim], dtype=np.float32
))
cudnn_output, cudnn_last_hidden, cudnn_last_state, param_extract = rnn_cell.cudnn_LSTM(
model=cudnn_model,
input_blob=input_blob,
initial_states=("hidden_init_cudnn", "cell_init_cudnn"),
dim_in=input_dim,
dim_out=hidden_dim,
scope="CUDNN",
return_params=True,
)
cudnn_loss = cudnn_model.AveragedLoss(
cudnn_model.SquaredL2Distance(
[cudnn_output, "target"], "CUDNN/dist"
), "CUDNN/loss"
)
own_output, own_last_hidden, _, own_last_state, own_params = rnn_cell.LSTM(
model=own_model,
input_blob=input_blob,
seq_lengths="seq_lengths",
initial_states=("hidden_init", "cell_init"),
dim_in=input_dim,
dim_out=hidden_dim,
scope="OWN",
return_params=True,
)
own_loss = own_model.AveragedLoss(
own_model.SquaredL2Distance([own_output, "target"], "OWN/dist"),
"OWN/loss"
)
# Add gradients
cudnn_model.AddGradientOperators([cudnn_loss])
own_model.AddGradientOperators([own_loss])
# Add parameter updates
LR = cudnn_model.param_init_net.ConstantFill(
[], shape=[1], value=0.01
)
ONE = cudnn_model.param_init_net.ConstantFill(
[], shape=[1], value=1.0
)
for param in cudnn_model.GetParams():
cudnn_model.WeightedSum(
[param, ONE, cudnn_model.param_to_grad[param], LR], param
)
for param in own_model.GetParams():
own_model.WeightedSum(
[param, ONE, own_model.param_to_grad[param], LR], param
)
# Copy states over
own_model.net.Copy(own_last_hidden, "hidden_init")
own_model.net.Copy(own_last_state, "cell_init")
cudnn_model.net.Copy(cudnn_last_hidden, "CUDNN/hidden_init_cudnn")
cudnn_model.net.Copy(cudnn_last_state, "CUDNN/cell_init_cudnn")
workspace.RunNetOnce(cudnn_model.param_init_net)
workspace.CreateNet(cudnn_model.net)
##
## CUDNN LSTM MODEL EXECUTION
##
# Get initial values from CuDNN LSTM so we can feed them
# to our own.
(param_extract_net, param_extract_mapping) = param_extract
workspace.RunNetOnce(param_extract_net)
cudnn_lstm_params = {
input_type: {
k: workspace.FetchBlob(v[0])
for k, v in viewitems(pars)
}
for input_type, pars in viewitems(param_extract_mapping)
}
# Run the model 3 times, so that some parameter updates are done
workspace.RunNet(cudnn_model.net.Proto().name, 3)
##
## OWN LSTM MODEL EXECUTION
##
# Map the cuDNN parameters to our own
workspace.RunNetOnce(own_model.param_init_net)
rnn_cell.InitFromLSTMParams(own_params, cudnn_lstm_params)
# Run the model 3 times, so that some parameter updates are done
workspace.CreateNet(own_model.net)
workspace.RunNet(own_model.net.Proto().name, 3)
##
## COMPARE RESULTS
##
# Then compare that final results after 3 runs are equal
own_output_data = workspace.FetchBlob(own_output)
own_last_hidden = workspace.FetchBlob(own_last_hidden)
own_loss = workspace.FetchBlob(own_loss)
cudnn_output_data = workspace.FetchBlob(cudnn_output)
cudnn_last_hidden = workspace.FetchBlob(cudnn_last_hidden)
cudnn_loss = workspace.FetchBlob(cudnn_loss)
self.assertTrue(np.allclose(own_output_data, cudnn_output_data))
self.assertTrue(np.allclose(own_last_hidden, cudnn_last_hidden))
self.assertTrue(np.allclose(own_loss, cudnn_loss))
|