File: dataset_ops_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (699 lines) | stat: -rw-r--r-- 23,847 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
import functools
import operator
import string

import hypothesis.strategies as st
import numpy as np
import numpy.testing as npt
from caffe2.python import core, dataset, workspace
from caffe2.python.dataset import Const
from caffe2.python.schema import (
    FeedRecord,
    FetchRecord,
    Field,
    List,
    Map,
    NewRecord,
    Scalar,
    Struct,
    from_blob_list,
)
from caffe2.python.test_util import TestCase
from hypothesis import given


def _assert_arrays_equal(actual, ref, err_msg):
    if ref.dtype.kind in ("S", "O", "U"):
        np.testing.assert_array_equal(actual, ref, err_msg=err_msg)
    else:
        np.testing.assert_allclose(actual, ref, atol=1e-4, rtol=1e-4, err_msg=err_msg)


def _assert_records_equal(actual, ref):
    assert isinstance(actual, Field)
    assert isinstance(ref, Field)
    b1 = actual.field_blobs()
    b2 = ref.field_blobs()
    assert len(b1) == len(b2), "Records have different lengths: %d vs. %d" % (
        len(b1),
        len(b2),
    )
    for name, d1, d2 in zip(ref.field_names(), b1, b2):
        _assert_arrays_equal(d1, d2, err_msg="Mismatch in field %s." % name)


@st.composite
def _sparse_features_map(draw, num_records, **kwargs):
    sparse_maps_lengths = draw(
        st.lists(
            st.integers(min_value=1, max_value=10),
            min_size=num_records,
            max_size=num_records,
        )
    )

    sparse_maps_total_length = sum(sparse_maps_lengths)

    sparse_keys = draw(
        st.lists(
            st.integers(min_value=1, max_value=100),
            min_size=sparse_maps_total_length,
            max_size=sparse_maps_total_length,
            unique=True,
        )
    )

    sparse_values_lengths = draw(
        st.lists(
            st.integers(min_value=1, max_value=10),
            min_size=sparse_maps_total_length,
            max_size=sparse_maps_total_length,
        )
    )

    total_sparse_values_lengths = sum(sparse_values_lengths)

    sparse_values = draw(
        # max_value is max int64
        st.lists(
            st.integers(min_value=1, max_value=9223372036854775807),
            min_size=total_sparse_values_lengths,
            max_size=total_sparse_values_lengths,
        )
    )

    return [
        sparse_maps_lengths,
        sparse_keys,
        sparse_values_lengths,
        sparse_values,
    ]


@st.composite
def _dense_features_map(draw, num_records, **kwargs):
    float_lengths = draw(
        st.lists(
            st.integers(min_value=1, max_value=10),
            min_size=num_records,
            max_size=num_records,
        )
    )

    total_length = sum(float_lengths)

    float_keys = draw(
        st.lists(
            st.integers(min_value=1, max_value=100),
            min_size=total_length,
            max_size=total_length,
            unique=True,
        )
    )

    float_values = draw(
        st.lists(st.floats(), min_size=total_length, max_size=total_length)
    )

    return [float_lengths, float_keys, float_values]


@st.composite
def _dataset(draw, min_elements=3, max_elements=10, **kwargs):
    schema = Struct(
        # Dense Features Map
        ("floats", Map(Scalar(np.int32), Scalar(np.float32))),
        # Sparse Features Map
        (
            "int_lists",
            Map(
                Scalar(np.int32),
                List(Scalar(np.int64)),
            ),
        ),
        # Complex Type
        ("text", Scalar(str)),
    )

    num_records = draw(st.integers(min_value=min_elements, max_value=max_elements))

    raw_dense_features_map_contents = draw(_dense_features_map(num_records))

    raw_sparse_features_map_contents = draw(_sparse_features_map(num_records))

    raw_text_contents = [
        draw(
            st.lists(
                st.text(alphabet=string.ascii_lowercase),
                min_size=num_records,
                max_size=num_records,
            )
        )
    ]

    # Concatenate all raw contents to a single one
    contents_raw = (
        raw_dense_features_map_contents
        + raw_sparse_features_map_contents
        + raw_text_contents
    )

    contents = from_blob_list(schema, contents_raw)

    return (schema, contents, num_records)


class TestDatasetOps(TestCase):
    @given(_dataset())
    def test_pack_unpack(self, input):
        """
        Tests if packing and unpacking of the whole dataset is an identity.
        """
        (schema, contents, num_records) = input

        dataset_fields = schema.field_names()

        for pack_to_single_shared_ptr in (True, False):
            net = core.Net("pack_unpack_net")
            batch = NewRecord(net, contents)
            FeedRecord(batch, contents)

            packed = net.PackRecords(
                batch.field_blobs(),
                1,
                fields=dataset_fields,
                pack_to_single_shared_ptr=pack_to_single_shared_ptr,
            )

            unpacked = packed.UnPackRecords(
                [], len(dataset_fields), fields=dataset_fields
            )

            workspace.RunNetOnce(net)

            for initial_tensor, unpacked_tensor in zip(batch.field_blobs(), unpacked):
                npt.assert_array_equal(
                    workspace.FetchBlob(initial_tensor),
                    workspace.FetchBlob(unpacked_tensor),
                )

    def test_dataset_ops(self):
        """
        1. Defining the schema of our dataset.

        This example schema could represent, for example, a search query log.
        """
        schema = Struct(
            # fixed size vector, which will be stored as a matrix when batched
            ("dense", Scalar((np.float32, 3))),
            # could represent a feature map from feature ID to float value
            ("floats", Map(Scalar(np.int32), Scalar(np.float32))),
            # could represent a multi-valued categorical feature map
            (
                "int_lists",
                Map(
                    Scalar(np.int32),
                    List(Scalar(np.int64)),
                ),
            ),
            # could represent a multi-valued, weighted categorical feature map
            (
                "id_score_pairs",
                Map(
                    Scalar(np.int32),
                    Map(
                        Scalar(np.int64),
                        Scalar(np.float32),
                        keys_name="ids",
                        values_name="scores",
                    ),
                ),
            ),
            # additional scalar information
            (
                "metadata",
                Struct(
                    ("user_id", Scalar(np.int64)),
                    ("user_embed", Scalar((np.float32, 2))),
                    ("query", Scalar(str)),
                ),
            ),
        )
        """
        This is what the flattened fields for this schema look like, along
        with its type. Each one of these fields will be stored, read and
        written as a tensor.
        """
        expected_fields = [
            ("dense", (np.float32, 3)),
            ("floats:lengths", np.int32),
            ("floats:values:keys", np.int32),
            ("floats:values:values", np.float32),
            ("int_lists:lengths", np.int32),
            ("int_lists:values:keys", np.int32),
            ("int_lists:values:values:lengths", np.int32),
            ("int_lists:values:values:values", np.int64),
            ("id_score_pairs:lengths", np.int32),
            ("id_score_pairs:values:keys", np.int32),
            ("id_score_pairs:values:values:lengths", np.int32),
            ("id_score_pairs:values:values:values:ids", np.int64),
            ("id_score_pairs:values:values:values:scores", np.float32),
            ("metadata:user_id", np.int64),
            ("metadata:user_embed", (np.float32, 2)),
            ("metadata:query", str),
        ]
        zipped = zip(expected_fields, schema.field_names(), schema.field_types())
        for (ref_name, ref_type), name, dtype in zipped:
            self.assertEquals(ref_name, name)
            self.assertEquals(np.dtype(ref_type), dtype)
        """
        2. The contents of our dataset.

        Contents as defined below could represent, for example, a log of
        search queries along with dense, sparse features and metadata.
        The dataset below has 3 top-level entries.
        """
        contents_raw = [
            # dense
            [[1.1, 1.2, 1.3], [2.1, 2.2, 2.3], [3.1, 3.2, 3.3]],
            # floats
            [1, 2, 3],  # len
            [11, 21, 22, 31, 32, 33],  # key
            [1.1, 2.1, 2.2, 3.1, 3.2, 3.3],  # value
            # int lists
            [2, 0, 1],  # len
            [11, 12, 31],  # key
            [2, 4, 3],  # value:len
            [111, 112, 121, 122, 123, 124, 311, 312, 313],  # value:value
            # id score pairs
            [1, 2, 2],  # len
            [11, 21, 22, 31, 32],  # key
            [1, 1, 2, 2, 3],  # value:len
            [111, 211, 221, 222, 311, 312, 321, 322, 323],  # value:ids
            [11.1, 21.1, 22.1, 22.2, 31.1, 31.2, 32.1, 32.2, 32.3],  # val:score
            # metadata
            [123, 234, 456],  # user_id
            [[0.2, 0.8], [0.5, 0.5], [0.7, 0.3]],  # user_embed
            ["dog posts", "friends who like to", "posts about ca"],  # query
        ]
        # convert the above content to ndarrays, checking against the schema
        contents = from_blob_list(schema, contents_raw)
        """
        3. Creating and appending to the dataset.
        We first create an empty dataset with the given schema.
        Then, a Writer is used to append these entries to the dataset.
        """
        ds = dataset.Dataset(schema)
        net = core.Net("init")
        with core.NameScope("init"):
            ds.init_empty(net)

            content_blobs = NewRecord(net, contents)
            FeedRecord(content_blobs, contents)
            writer = ds.writer(init_net=net)
            writer.write_record(net, content_blobs)
        workspace.RunNetOnce(net)
        """
        4. Iterating through the dataset contents.

        If we were to iterate through the top level entries of our dataset,
        this is what we should expect to see:
        """
        entries_raw = [
            (
                [[1.1, 1.2, 1.3]],  # dense
                [1],
                [11],
                [1.1],  # floats
                [2],
                [11, 12],
                [2, 4],
                [111, 112, 121, 122, 123, 124],  # intlst
                [1],
                [11],
                [1],
                [111],
                [11.1],  # id score pairs
                [123],
                [[0.2, 0.8]],
                ["dog posts"],  # metadata
            ),
            (
                [[2.1, 2.2, 2.3]],  # dense
                [2],
                [21, 22],
                [2.1, 2.2],  # floats
                [0],
                [],
                [],
                [],  # int list
                [2],
                [21, 22],
                [1, 2],
                [211, 221, 222],
                [21.1, 22.1, 22.2],
                [234],
                [[0.5, 0.5]],
                ["friends who like to"],  # metadata
            ),
            (
                [[3.1, 3.2, 3.3]],  # dense
                [3],
                [31, 32, 33],
                [3.1, 3.2, 3.3],  # floats
                [1],
                [31],
                [3],
                [311, 312, 313],  # int lst
                [2],
                [31, 32],
                [2, 3],
                [311, 312, 321, 322, 323],
                [31.1, 31.2, 32.1, 32.2, 32.3],  # id score list
                [456],
                [[0.7, 0.3]],
                ["posts about ca"],  # metadata
            ),
            # after the end of the dataset, we will keep getting empty vectors
            ([],) * 16,
            ([],) * 16,
        ]
        entries = [from_blob_list(schema, e) for e in entries_raw]
        """
        Let's go ahead and create the reading nets.
        We will run `read` net multiple times and assert that we are reading the
        entries the way we stated above.
        """
        read_init_net = core.Net("read_init")
        read_next_net = core.Net("read_next")
        reader = ds.reader(read_init_net)
        should_continue, batch = reader.read_record(read_next_net)

        workspace.RunNetOnce(read_init_net)
        workspace.CreateNet(read_next_net, True)

        for entry in entries:
            workspace.RunNet(str(read_next_net))
            actual = FetchRecord(batch)
            _assert_records_equal(actual, entry)
        """
        5. Reading/writing in a single plan

        If all of operations on the data are expressible as Caffe2 operators,
        we don't need to load the data to python, iterating through the dataset
        in a single Plan.

        Where we will process the dataset a little and store it in a second
        dataset. We can reuse the same Reader since it supports reset.
        """
        reset_net = core.Net("reset_net")
        reader.reset(reset_net)
        read_step, batch = reader.execution_step()
        """ We will add the line number * 1000 to the feature ids. """
        process_net = core.Net("process")
        line_no = Const(process_net, 0, dtype=np.int32)
        const_one = Const(process_net, 1000, dtype=np.int32)
        process_net.Add([line_no, const_one], [line_no])
        field = batch.floats.keys.get()
        process_net.Print(field, [])
        process_net.Add([field, line_no], field, broadcast=1, axis=0)
        """ Lets create a second dataset and append to it. """
        ds2 = dataset.Dataset(schema, name="dataset2")
        ds2.init_empty(reset_net)
        writer = ds2.writer(reset_net)
        writer.write_record(process_net, batch)
        # commit is not necessary for DatasetWriter but will add it for
        # generality of the example
        commit_net = core.Net("commit")
        writer.commit(commit_net)
        """ Time to create and run a plan which will do the processing """
        plan = core.Plan("process")
        plan.AddStep(core.execution_step("reset", reset_net))
        plan.AddStep(read_step.AddNet(process_net))
        plan.AddStep(core.execution_step("commit", commit_net))
        workspace.RunPlan(plan)
        """
        Now we should have dataset2 populated.
        """
        ds2_data = FetchRecord(ds2.content())
        field = ds2_data.floats.keys
        field.set(blob=field.get() - [1000, 2000, 2000, 3000, 3000, 3000])
        _assert_records_equal(contents, ds2_data)
        """
        6. Slicing a dataset

        You can create a new schema from pieces of another schema and reuse
        the same data.
        """
        subschema = Struct(("top_level", schema.int_lists.values))
        int_list_contents = contents.int_lists.values.field_names()
        self.assertEquals(len(subschema.field_names()), len(int_list_contents))
        """
        7. Random Access a dataset

        """
        read_init_net = core.Net("read_init")
        read_next_net = core.Net("read_next")

        idx = np.array([2, 1, 0])
        indices_blob = Const(read_init_net, idx, name="indices")
        reader = ds.random_reader(read_init_net, indices_blob)
        reader.computeoffset(read_init_net)

        should_stop, batch = reader.read_record(read_next_net)

        workspace.CreateNet(read_init_net, True)
        workspace.RunNetOnce(read_init_net)

        workspace.CreateNet(read_next_net, True)

        for i in range(len(entries)):
            k = idx[i] if i in idx else i
            entry = entries[k]
            workspace.RunNet(str(read_next_net))
            actual = FetchRecord(batch)
            _assert_records_equal(actual, entry)
        workspace.RunNet(str(read_next_net))
        self.assertEquals(True, workspace.FetchBlob(should_stop))
        """
        8. Random Access a dataset with loop_over = true

        """
        read_init_net = core.Net("read_init")
        read_next_net = core.Net("read_next")

        idx = np.array([2, 1, 0])
        indices_blob = Const(read_init_net, idx, name="indices")
        reader = ds.random_reader(read_init_net, indices_blob, loop_over=True)
        reader.computeoffset(read_init_net)

        should_stop, batch = reader.read_record(read_next_net)

        workspace.CreateNet(read_init_net, True)
        workspace.RunNetOnce(read_init_net)

        workspace.CreateNet(read_next_net, True)

        for _ in range(len(entries) * 3):
            workspace.RunNet(str(read_next_net))
            self.assertEquals(False, workspace.FetchBlob(should_stop))
        """
        9. Sort and shuffle a dataset

        This sort the dataset using the score of a certain column,
        and then shuffle within each chunk of size batch_size * shuffle_size
        before shuffling the chunks.

        """
        read_init_net = core.Net("read_init")
        read_next_net = core.Net("read_next")

        reader = ds.random_reader(read_init_net)
        reader.sort_and_shuffle(read_init_net, "int_lists:lengths", 1, 2)
        reader.computeoffset(read_init_net)

        should_continue, batch = reader.read_record(read_next_net)

        workspace.CreateNet(read_init_net, True)
        workspace.RunNetOnce(read_init_net)

        workspace.CreateNet(read_next_net, True)

        expected_idx = np.array([2, 1, 0])
        for i in range(len(entries)):
            k = expected_idx[i] if i in expected_idx else i
            entry = entries[k]
            workspace.RunNet(str(read_next_net))
            actual = FetchRecord(batch)
            _assert_records_equal(actual, entry)

        """
        Trim a dataset
        """
        trim_net = core.Net("trim_ds")
        ds.trim(trim_net, multiple_of=2)
        workspace.RunNetOnce(trim_net)
        trimmed = FetchRecord(ds.content())
        EXPECTED_SIZES = [2, 2, 3, 3, 2, 2, 2, 6, 2, 3, 3, 4, 4, 2, 2, 2]
        actual_sizes = [d.shape[0] for d in trimmed.field_blobs()]
        self.assertEquals(EXPECTED_SIZES, actual_sizes)

    def test_last_n_window_ops(self):
        collect_net = core.Net("collect_net")
        collect_net.GivenTensorFill(
            [],
            "input",
            shape=[3, 2],
            values=[1.0, 2.0, 3.0, 4.0, 5.0, 6.0],
        )
        input_array = np.array(list(range(1, 7)), dtype=np.float32).reshape(3, 2)

        workspace.CreateBlob("output")
        workspace.FeedBlob("next", np.array(0, dtype=np.int32))
        collect_net.LastNWindowCollector(
            ["output", "next", "input"],
            ["output", "next"],
            num_to_collect=7,
        )
        plan = core.Plan("collect_data")
        plan.AddStep(core.execution_step("collect_data", [collect_net], num_iter=1))
        workspace.RunPlan(plan)
        reference_result = workspace.FetchBlob("output")
        npt.assert_array_equal(input_array, reference_result)

        plan = core.Plan("collect_data")
        plan.AddStep(core.execution_step("collect_data", [collect_net], num_iter=2))
        workspace.RunPlan(plan)
        reference_result = workspace.FetchBlob("output")
        npt.assert_array_equal(input_array[[1, 2, 2, 0, 1, 2, 0]], reference_result)

        plan = core.Plan("collect_data")
        plan.AddStep(core.execution_step("collect_data", [collect_net], num_iter=3))
        workspace.RunPlan(plan)
        reference_result = workspace.FetchBlob("output")
        npt.assert_array_equal(input_array[[2, 0, 1, 2, 2, 0, 1]], reference_result)

    def test_last_n_window_ops_shape_inference(self):
        collect_net = core.Net("collect_net")
        collect_net.GivenTensorFill(
            [],
            "input",
            shape=[3, 2],
            values=[1.0, 2.0, 3.0, 4.0, 5.0, 6.0],
        )

        workspace.CreateBlob("output")
        workspace.FeedBlob("next", np.array(0, dtype=np.int32))
        collect_net.LastNWindowCollector(
            ["output", "next", "input"],
            ["output", "next"],
            num_to_collect=7,
        )
        (shapes, types) = workspace.InferShapesAndTypes([collect_net])
        workspace.RunNetOnce(collect_net)

        self.assertTrue(
            np.array_equal(
                shapes["output"], np.array([7, workspace.blobs["output"].shape[1]])
            )
        )

    def test_last_n_window_ops_shape_inference_4d_input(self):
        input_shape = [3, 2, 4, 5]
        collect_net = core.Net("collect_net")
        collect_net.GivenTensorFill(
            [],
            "input",
            shape=input_shape,
            values=[
                float(val) for val in range(functools.reduce(operator.mul, input_shape))
            ],
        )

        workspace.CreateBlob("output")
        workspace.FeedBlob("next", np.array(0, dtype=np.int32))
        collect_net.LastNWindowCollector(
            ["output", "next", "input"],
            ["output", "next"],
            num_to_collect=7,
        )
        (shapes, types) = workspace.InferShapesAndTypes([collect_net])
        workspace.RunNetOnce(collect_net)

        self.assertTrue(
            np.array_equal(
                shapes["output"], np.array([7, *list(workspace.blobs["output"].shape[1:])])
            )
        )

    def test_collect_tensor_ops(self):
        init_net = core.Net("init_net")
        blobs = ["blob_1", "blob_2", "blob_3"]
        bvec_map = {}
        ONE = init_net.ConstantFill([], "ONE", shape=[1, 2], value=1)
        for b in blobs:
            init_net.ConstantFill([], [b], shape=[1, 2], value=0)
            bvec_map[b] = b + "_vec"
            init_net.CreateTensorVector([], [bvec_map[b]])

        reader_net = core.Net("reader_net")
        for b in blobs:
            reader_net.Add([b, ONE], [b])

        collect_net = core.Net("collect_net")
        num_to_collect = 1000
        max_example_to_cover = 100000
        bvec = [bvec_map[b] for b in blobs]
        collect_net.CollectTensor(
            bvec + blobs,
            bvec,
            num_to_collect=num_to_collect,
        )

        print("Collect Net Proto: {}".format(collect_net.Proto()))

        plan = core.Plan("collect_data")
        plan.AddStep(core.execution_step("collect_init", init_net))
        plan.AddStep(
            core.execution_step(
                "collect_data", [reader_net, collect_net], num_iter=max_example_to_cover
            )
        )
        workspace.RunPlan(plan)

        # concat the collected tensors
        concat_net = core.Net("concat_net")
        bconcated_map = {}
        bsize_map = {}
        for b in blobs:
            bconcated_map[b] = b + "_concated"
            bsize_map[b] = b + "_size"
            concat_net.ConcatTensorVector([bvec_map[b]], [bconcated_map[b]])
            concat_net.TensorVectorSize([bvec_map[b]], [bsize_map[b]])

        workspace.RunNetOnce(concat_net)

        # check data
        reference_result = workspace.FetchBlob(bconcated_map[blobs[0]])
        self.assertEqual(
            reference_result.shape, (min(num_to_collect, max_example_to_cover), 2)
        )
        size = workspace.FetchBlob(bsize_map[blobs[0]])
        self.assertEqual(tuple(), size.shape)
        self.assertEqual(min(num_to_collect, max_example_to_cover), size.item())

        hist, _ = np.histogram(
            reference_result[:, 0], bins=10, range=(1, max_example_to_cover)
        )
        print("Sample histogram: {}".format(hist))

        self.assertTrue(all(hist > 0.6 * (num_to_collect / 10)))
        for i in range(1, len(blobs)):
            result = workspace.FetchBlob(bconcated_map[blobs[i]])
            self.assertEqual(reference_result.tolist(), result.tolist())


if __name__ == "__main__":
    import unittest

    unittest.main()