1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
|
import functools
from hypothesis import given
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core
import caffe2.python.hypothesis_test_util as hu
class TestDecayAdagrad(hu.HypothesisTestCase):
@staticmethod
def ref_decay_adagrad(param, mom1, mom2, grad, LR, ITER,
beta1, beta2, epsilon, weight_decay, bias_correction_first, output_grad=False):
t = ITER + 1
mom1_out = (beta1 * mom1) + (1 - beta1) * grad
mom2_out = mom2 + np.square(grad)
if bias_correction_first:
c = 1 - np.power(beta1, t)
else:
c = 1.0
grad_out = mom1_out / c / (np.sqrt(mom2_out) + epsilon) + weight_decay * param
param_out = param + LR * grad_out
return param_out, mom1_out, mom2_out
@given(inputs=hu.tensors(n=4),
ITER=st.integers(min_value=0, max_value=10000),
LR=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
beta1=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
beta2=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
weight_decay=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
**hu.gcs_cpu_only)
def test_decay_adagrad(self, inputs, ITER, LR, beta1, beta2, epsilon, weight_decay, gc, dc):
bias_correction_first = True
param, mom1, mom2, grad = inputs
mom2 = np.abs(mom2)
ITER = np.array([ITER], dtype=np.int64)
LR = np.array([LR], dtype=np.float32)
op = core.CreateOperator(
"DecayAdagrad",
["param", "mom1", "mom2", "grad", "lr", "iter"],
["output_param", "output_mom1", "output_mom2"],
beta1=beta1, beta2=beta2, epsilon=epsilon, weight_decay=weight_decay, bias_correction_first=bias_correction_first)
# Iter lives on the CPU
input_device_options = {'iter': hu.cpu_do}
self.assertReferenceChecks(
gc, op,
[param, mom1, mom2, grad, LR, ITER],
functools.partial(
self.ref_decay_adagrad,
beta1=beta1, beta2=beta2, epsilon=epsilon, weight_decay=weight_decay, bias_correction_first=bias_correction_first),
input_device_options=input_device_options)
if __name__ == "__main__":
import unittest
unittest.main()
|