File: depthwise_3x3_conv_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (56 lines) | stat: -rw-r--r-- 1,863 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56





import numpy as np
import caffe2.python.hypothesis_test_util as hu
from caffe2.python import core, utils
from hypothesis import given, settings
import hypothesis.strategies as st


class Depthwise3x3ConvOpsTest(hu.HypothesisTestCase):
    @given(pad=st.integers(0, 1),
           kernel=st.integers(3, 3),
           size=st.integers(4, 8),
           channels=st.integers(2, 4),
           batch_size=st.integers(1, 1),
           order=st.sampled_from(["NCHW"]),
           engine=st.sampled_from(["DEPTHWISE_3x3"]),
           use_bias=st.booleans(),
           **hu.gcs)
    @settings(deadline=10000)
    def test_convolution_gradients(self, pad, kernel, size,
                                   channels, batch_size,
                                   order, engine, use_bias, gc, dc):
        op = core.CreateOperator(
            "Conv",
            ["X", "w", "b"] if use_bias else ["X", "w"],
            ["Y"],
            kernel=kernel,
            pad=pad,
            group=channels,
            order=order,
            engine=engine,
        )
        X = np.random.rand(
            batch_size, size, size, channels).astype(np.float32) - 0.5
        w = np.random.rand(
            channels, kernel, kernel, 1).astype(np.float32)\
            - 0.5
        b = np.random.rand(channels).astype(np.float32) - 0.5
        if order == "NCHW":
            X = utils.NHWC2NCHW(X)
            w = utils.NHWC2NCHW(w)

        inputs = [X, w, b] if use_bias else [X, w]
        # Error handling path.
        if size + pad + pad < kernel or size + pad + pad < kernel:
            with self.assertRaises(RuntimeError):
                self.assertDeviceChecks(dc, op, inputs, [0])
            return

        self.assertDeviceChecks(dc, op, inputs, [0])
        for i in range(len(inputs)):
            self.assertGradientChecks(gc, op, inputs, i, [0])