1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
try:
import cv2
except ImportError:
pass # skip if opencv is not available
import numpy as np
# === copied from utils/keypoints.py as reference ===
_NUM_KEYPOINTS = -1 # cfg.KRCNN.NUM_KEYPOINTS
_INFERENCE_MIN_SIZE = 0 # cfg.KRCNN.INFERENCE_MIN_SIZE
def heatmaps_to_keypoints(maps, rois):
"""Extracts predicted keypoint locations from heatmaps. Output has shape
(#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob)
for each keypoint.
"""
# This function converts a discrete image coordinate in a HEATMAP_SIZE x
# HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain
# consistency with keypoints_to_heatmap_labels by using the conversion from
# Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a
# continuous coordinate.
offset_x = rois[:, 0]
offset_y = rois[:, 1]
widths = rois[:, 2] - rois[:, 0]
heights = rois[:, 3] - rois[:, 1]
widths = np.maximum(widths, 1)
heights = np.maximum(heights, 1)
widths_ceil = np.ceil(widths).astype(np.int)
heights_ceil = np.ceil(heights).astype(np.int)
num_keypoints = np.maximum(maps.shape[1], _NUM_KEYPOINTS)
# NCHW to NHWC for use with OpenCV
maps = np.transpose(maps, [0, 2, 3, 1])
min_size = _INFERENCE_MIN_SIZE
xy_preds = np.zeros(
(len(rois), 4, num_keypoints), dtype=np.float32)
for i in range(len(rois)):
if min_size > 0:
roi_map_width = int(np.maximum(widths_ceil[i], min_size))
roi_map_height = int(np.maximum(heights_ceil[i], min_size))
else:
roi_map_width = widths_ceil[i]
roi_map_height = heights_ceil[i]
width_correction = widths[i] / roi_map_width
height_correction = heights[i] / roi_map_height
roi_map = cv2.resize(
maps[i], (roi_map_width, roi_map_height),
interpolation=cv2.INTER_CUBIC)
# Bring back to CHW
roi_map = np.transpose(roi_map, [2, 0, 1])
roi_map_probs = scores_to_probs(roi_map.copy())
w = roi_map.shape[2]
for k in range(num_keypoints):
pos = roi_map[k, :, :].argmax()
x_int = pos % w
y_int = (pos - x_int) // w
assert (roi_map_probs[k, y_int, x_int] ==
roi_map_probs[k, :, :].max())
x = (x_int + 0.5) * width_correction
y = (y_int + 0.5) * height_correction
xy_preds[i, 0, k] = x + offset_x[i]
xy_preds[i, 1, k] = y + offset_y[i]
xy_preds[i, 2, k] = roi_map[k, y_int, x_int]
xy_preds[i, 3, k] = roi_map_probs[k, y_int, x_int]
return xy_preds
def scores_to_probs(scores):
"""Transforms CxHxW of scores to probabilities spatially."""
channels = scores.shape[0]
for c in range(channels):
temp = scores[c, :, :]
max_score = temp.max()
temp = np.exp(temp - max_score) / np.sum(np.exp(temp - max_score))
scores[c, :, :] = temp
return scores
def approx_heatmap_keypoint(heatmaps_in, bboxes_in):
'''
Mask R-CNN uses bicubic upscaling before taking the maximum of the heat map
for keypoints. We are using bilinear upscaling, which means we can approximate
the maximum coordinate with the low dimension maximum coordinates. We would like
to avoid bicubic upscaling, because it is computationally expensive. Brown and
Lowe (Invariant Features from Interest Point Groups, 2002) uses a method for
fitting a 3D quadratic function to the local sample points to determine the
interpolated location of the maximum of scale space, and his experiments showed
that this provides a substantial improvement to matching and stability for
keypoint extraction. This approach uses the Taylor expansion (up to the
quadratic terms) of the scale-space function. It is equivalent with the Newton
method. This efficient method were used in many keypoint estimation algorithms
like SIFT, SURF etc...
The implementation of Newton methods with numerical analysis is straight forward
and super simple, though we need a linear solver.
'''
assert len(bboxes_in.shape) == 2
N = bboxes_in.shape[0]
assert bboxes_in.shape[1] == 4
assert len(heatmaps_in.shape) == 4
assert heatmaps_in.shape[0] == N
keypoint_count = heatmaps_in.shape[1]
heatmap_size = heatmaps_in.shape[2]
assert heatmap_size >= 2
assert heatmaps_in.shape[3] == heatmap_size
keypoints_out = np.zeros((N, keypoint_count, 4))
for k in range(N):
x0, y0, x1, y1 = bboxes_in[k, :]
xLen = np.maximum(x1 - x0, 1)
yLen = np.maximum(y1 - y0, 1)
softmax_map = scores_to_probs(heatmaps_in[k, :, :, :].copy())
f = heatmaps_in[k]
for j in range(keypoint_count):
f = heatmaps_in[k][j]
maxX = -1
maxY = -1
maxScore = -100.0
maxProb = -100.0
for y in range(heatmap_size):
for x in range(heatmap_size):
score = f[y, x]
prob = softmax_map[j, y, x]
if maxX < 0 or maxScore < score:
maxScore = score
maxProb = prob
maxX = x
maxY = y
# print(maxScore, maxX, maxY)
# initialize fmax values of 3x3 grid
# when 3x3 grid going out-of-bound, mirrowing around center
fmax = [[0] * 3 for r in range(3)]
for x in range(3):
for y in range(3):
hm_x = x + maxX - 1
hm_y = y + maxY - 1
hm_x = hm_x - 2 * (hm_x >= heatmap_size) + 2 * (hm_x < 0)
hm_y = hm_y - 2 * (hm_y >= heatmap_size) + 2 * (hm_y < 0)
assert((hm_x < heatmap_size) and (hm_x >= 0))
assert((hm_y < heatmap_size) and (hm_y >= 0))
fmax[y][x] = f[hm_y][hm_x]
# print("python fmax ", fmax)
# b = -f'(0), A = f''(0) Hessian matrix
b = [-(fmax[1][2] - fmax[1][0]) / 2, -
(fmax[2][1] - fmax[0][1]) / 2]
A = [[fmax[1][0] - 2 * fmax[1][1] + fmax[1][2],
(fmax[2][2] - fmax[2][0] - fmax[0][2] + fmax[0][0]) / 4],
[(fmax[2][2] - fmax[2][0] - fmax[0][2] + fmax[0][0]) / 4,
fmax[0][1] - 2 * fmax[1][1] + fmax[2][1]]]
# print("python A")
# print(A)
# solve Ax=b
div = A[1][1] * A[0][0] - A[0][1] * A[1][0]
if abs(div) < 0.0001:
deltaX = 0
deltaY = 0
deltaScore = maxScore
else:
deltaY = (b[1] * A[0][0] - b[0] * A[1][0]) / div
deltaX = (b[0] * A[1][1] - b[1] * A[0][1]) / div
# clip delta if going out-of-range of 3x3 grid
if abs(deltaX) > 1.5 or abs(deltaY) > 1.5:
scale = 1.5 / max(abs(deltaX), abs(deltaY))
deltaX *= scale
deltaY *= scale
# score = f(0) + f'(0)*x + 1/2 * f''(0) * x^2
# = f(0) - b*x + 1/2*x*A*x
deltaScore = (
fmax[1][1] - (b[0] * deltaX + b[1] * deltaY) +
0.5 * (deltaX * deltaX * A[0][0] +
deltaX * deltaY * A[1][0] +
deltaY * deltaX * A[0][1] +
deltaY * deltaY * A[1][1]))
assert abs(deltaX) <= 1.5
assert abs(deltaY) <= 1.5
# final coordinates
keypoints_out[k, j, :] = (
x0 + (maxX + deltaX + .5) * xLen / heatmap_size,
y0 + (maxY + deltaY + .5) * yLen / heatmap_size,
deltaScore,
maxProb,
)
keypoints_out = np.transpose(keypoints_out, [0, 2, 1])
return keypoints_out
|