File: erf_op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (30 lines) | stat: -rw-r--r-- 749 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30





import math

from caffe2.python import core
from hypothesis import given, settings
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial

import numpy as np
import unittest


class TestErfOp(serial.SerializedTestCase):
    @given(
        X=hu.tensor(elements=hu.floats(min_value=-0.7, max_value=0.7)),
        **hu.gcs)
    @settings(deadline=10000)
    def test_erf(self, X, gc, dc):
        op = core.CreateOperator('Erf', ["X"], ["Y"])
        self.assertReferenceChecks(gc, op, [X], lambda x: (np.vectorize(math.erf)(X),))
        self.assertDeviceChecks(dc, op, [X], [0])
        self.assertGradientChecks(gc, op, [X], 0, [0])


if __name__ == "__main__":
    unittest.main()