File: filler_ops_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (271 lines) | stat: -rw-r--r-- 8,476 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271





from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial

from hypothesis import given, settings
import hypothesis.strategies as st
import numpy as np


def _fill_diagonal(shape, value):
    result = np.zeros(shape)
    np.fill_diagonal(result, value)
    return (result,)


class TestFillerOperator(serial.SerializedTestCase):

    @given(**hu.gcs)
    @settings(deadline=10000)
    def test_shape_error(self, gc, dc):
        op = core.CreateOperator(
            'GaussianFill',
            [],
            'out',
            shape=32,  # illegal parameter
            mean=0.0,
            std=1.0,
        )
        exception = False
        try:
            workspace.RunOperatorOnce(op)
        except Exception:
            exception = True
        self.assertTrue(exception, "Did not throw exception on illegal shape")

        op = core.CreateOperator(
            'ConstantFill',
            [],
            'out',
            shape=[],  # scalar
            value=2.0,
        )
        exception = False
        self.assertTrue(workspace.RunOperatorOnce(op))
        self.assertEqual(workspace.FetchBlob('out'), [2.0])

    @given(**hu.gcs)
    @settings(deadline=10000)
    def test_int64_shape(self, gc, dc):
        large_dim = 2 ** 31 + 1
        net = core.Net("test_shape_net")
        net.UniformFill(
            [],
            'out',
            shape=[0, large_dim],
            min=0.0,
            max=1.0,
        )
        self.assertTrue(workspace.CreateNet(net))
        self.assertTrue(workspace.RunNet(net.Name()))
        self.assertEqual(workspace.blobs['out'].shape, (0, large_dim))

    @given(
        shape=hu.dims().flatmap(
            lambda dims: hu.arrays(
                [dims], dtype=np.int64,
                elements=st.integers(min_value=0, max_value=20)
            )
        ),
        a=st.integers(min_value=0, max_value=100),
        b=st.integers(min_value=0, max_value=100),
        **hu.gcs
    )
    @settings(deadline=10000)
    def test_uniform_int_fill_op_blob_input(self, shape, a, b, gc, dc):
        net = core.Net('test_net')

        with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
            shape_blob = net.Const(shape, dtype=np.int64)
        a_blob = net.Const(a, dtype=np.int32)
        b_blob = net.Const(b, dtype=np.int32)
        uniform_fill = net.UniformIntFill([shape_blob, a_blob, b_blob],
                                          1, input_as_shape=1)

        workspace.RunNetOnce(net)

        blob_out = workspace.FetchBlob(uniform_fill)
        if b < a:
            new_shape = shape[:]
            new_shape[0] = 0
            np.testing.assert_array_equal(new_shape, blob_out.shape)
        else:
            np.testing.assert_array_equal(shape, blob_out.shape)
            self.assertTrue((blob_out >= a).all())
            self.assertTrue((blob_out <= b).all())

    @given(
        **hu.gcs
    )
    def test_uniform_fill_using_arg(self, gc, dc):
        net = core.Net('test_net')
        shape = [2**3, 5]
        # uncomment this to test filling large blob
        # shape = [2**30, 5]
        min_v = -100
        max_v = 100
        output_blob = net.UniformIntFill(
            [],
            ['output_blob'],
            shape=shape,
            min=min_v,
            max=max_v,
        )

        workspace.RunNetOnce(net)
        output_data = workspace.FetchBlob(output_blob)

        np.testing.assert_array_equal(shape, output_data.shape)
        min_data = np.min(output_data)
        max_data = np.max(output_data)

        self.assertGreaterEqual(min_data, min_v)
        self.assertLessEqual(max_data, max_v)

        self.assertNotEqual(min_data, max_data)

    @serial.given(
        shape=st.sampled_from(
            [
                [3, 3],
                [5, 5, 5],
                [7, 7, 7, 7],
            ]
        ),
        **hu.gcs
    )
    def test_diagonal_fill_op_float(self, shape, gc, dc):
        value = 2.5
        op = core.CreateOperator(
            'DiagonalFill',
            [],
            'out',
            shape=shape,  # scalar
            value=value,
        )

        for device_option in dc:
            op.device_option.CopyFrom(device_option)
            # Check against numpy reference
            self.assertReferenceChecks(gc, op, [shape, value], _fill_diagonal)

    @given(**hu.gcs)
    def test_diagonal_fill_op_int(self, gc, dc):
        value = 2
        shape = [3, 3]
        op = core.CreateOperator(
            'DiagonalFill',
            [],
            'out',
            shape=shape,
            dtype=core.DataType.INT32,
            value=value,
        )

        # Check against numpy reference
        self.assertReferenceChecks(gc, op, [shape, value], _fill_diagonal)

    @serial.given(lengths=st.lists(st.integers(min_value=0, max_value=10),
                                   min_size=0,
                                   max_size=10),
           **hu.gcs)
    def test_lengths_range_fill(self, lengths, gc, dc):
        op = core.CreateOperator(
            "LengthsRangeFill",
            ["lengths"],
            ["increasing_seq"])

        def _len_range_fill(lengths):
            sids = []
            for _, l in enumerate(lengths):
                sids.extend(list(range(l)))
            return (np.array(sids, dtype=np.int32), )

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[np.array(lengths, dtype=np.int32)],
            reference=_len_range_fill)

    @given(**hu.gcs)
    def test_gaussian_fill_op(self, gc, dc):
        op = core.CreateOperator(
            'GaussianFill',
            [],
            'out',
            shape=[17, 3, 3],  # sample odd dimensions
            mean=0.0,
            std=1.0,
        )

        for device_option in dc:
            op.device_option.CopyFrom(device_option)
            assert workspace.RunOperatorOnce(op), "GaussianFill op did not run "
            "successfully"

            blob_out = workspace.FetchBlob('out')
            assert np.count_nonzero(blob_out) > 0, "All generated elements are "
            "zeros. Is the random generator functioning correctly?"

    @given(**hu.gcs)
    def test_msra_fill_op(self, gc, dc):
        op = core.CreateOperator(
            'MSRAFill',
            [],
            'out',
            shape=[15, 5, 3],  # sample odd dimensions
        )
        for device_option in dc:
            op.device_option.CopyFrom(device_option)
            assert workspace.RunOperatorOnce(op), "MSRAFill op did not run "
            "successfully"

            blob_out = workspace.FetchBlob('out')
            assert np.count_nonzero(blob_out) > 0, "All generated elements are "
            "zeros. Is the random generator functioning correctly?"

    @given(
        min=st.integers(min_value=0, max_value=5),
        range=st.integers(min_value=1, max_value=10),
        emb_size=st.sampled_from((10000, 20000, 30000)),
        dim_size=st.sampled_from((16, 32, 64)),
        **hu.gcs)
    @settings(deadline=None)
    def test_fp16_uniformfill_op(self, min, range, emb_size, dim_size, gc, dc):
        op = core.CreateOperator(
            'Float16UniformFill',
            [],
            'out',
            shape=[emb_size, dim_size],
            min=float(min),
            max=float(min + range),
        )
        for device_option in dc:
            op.device_option.CopyFrom(device_option)
            assert workspace.RunOperatorOnce(op), "Float16UniformFill op did not run successfully"

            self.assertEqual(workspace.blobs['out'].shape, (emb_size, dim_size))

            blob_out = workspace.FetchBlob('out')

            expected_type = "float16"
            expected_mean = min + range / 2.0
            expected_var = range * range / 12.0
            expected_min = min
            expected_max = min + range

            self.assertEqual(blob_out.dtype.name, expected_type)
            self.assertAlmostEqual(np.mean(blob_out, dtype=np.float32), expected_mean, delta=0.1)
            self.assertAlmostEqual(np.var(blob_out, dtype=np.float32), expected_var, delta=0.1)
            self.assertGreaterEqual(np.min(blob_out), expected_min)
            self.assertLessEqual(np.max(blob_out), expected_max)

if __name__ == "__main__":
    import unittest
    unittest.main()