File: flatten_op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (38 lines) | stat: -rw-r--r-- 922 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38





from hypothesis import given
import numpy as np

from caffe2.python import core
import caffe2.python.hypothesis_test_util as hu


class TestFlatten(hu.HypothesisTestCase):
    @given(X=hu.tensor(min_dim=2, max_dim=4),
           **hu.gcs)
    def test_flatten(self, X, gc, dc):
        for axis in range(X.ndim + 1):
            op = core.CreateOperator(
                "Flatten",
                ["X"],
                ["Y"],
                axis=axis)

            def flatten_ref(X):
                shape = X.shape
                outer = np.prod(shape[:axis]).astype(int)
                inner = np.prod(shape[axis:]).astype(int)
                return np.copy(X).reshape(outer, inner),

            self.assertReferenceChecks(gc, op, [X], flatten_ref)

        # Check over multiple devices
        self.assertDeviceChecks(dc, op, [X], [0])


if __name__ == "__main__":
    import unittest
    unittest.main()