File: fused_nbit_rowwise_test.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (110 lines) | stat: -rw-r--r-- 3,775 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/operator_schema.h"
#include "caffe2/utils/proto_utils.h"

#include <gtest/gtest.h>

namespace caffe2 {

TEST(OperatorSchemaTest, TensorInferenceNbit) {
  for (int bit_rate : {2, 4}) {
    const OpSchema* schema = OpSchemaRegistry::Schema(
        "FloatToFused" + std::to_string(bit_rate) + "BitRowwiseQuantized");
    EXPECT_TRUE(schema != nullptr);

    OperatorDef def = CreateOperatorDef(
        "FloatToFused" + std::to_string(bit_rate) + "BitRowwiseQuantized",
        "",
        vector<string>{"in"},
        vector<string>{"out"});
    vector<TensorShape> in_shapes(1);
    in_shapes[0].set_data_type(TensorProto::FLOAT);
    in_shapes[0].add_dims(20000);
    in_shapes[0].add_dims(64);

    vector<TensorShape> out = schema->InferTensor(def, in_shapes);
    EXPECT_EQ(out.size(), 1);
    EXPECT_EQ(out[0].data_type(), TensorProto::UINT8);
    EXPECT_EQ(out[0].dims_size(), 2);
    EXPECT_EQ(out[0].dims(0), 20000);
    EXPECT_EQ(out[0].dims(1), 64 / (8 / bit_rate) + 4);
  }
}

TEST(OperatorSchemaTest, TensorInferenceNbitHalf) {
  for (int bit_rate : {2, 4}) {
    const OpSchema* schema = OpSchemaRegistry::Schema(
        "HalfToFused" + std::to_string(bit_rate) + "BitRowwiseQuantized");
    EXPECT_TRUE(schema != nullptr);

    OperatorDef def = CreateOperatorDef(
        "HalfToFused" + std::to_string(bit_rate) + "BitRowwiseQuantized",
        "",
        vector<string>{"in"},
        vector<string>{"out"});
    vector<TensorShape> in_shapes(1);
    in_shapes[0].set_data_type(TensorProto::FLOAT16);
    in_shapes[0].add_dims(20000);
    in_shapes[0].add_dims(64);

    vector<TensorShape> out = schema->InferTensor(def, in_shapes);
    EXPECT_EQ(out.size(), 1);
    EXPECT_EQ(out[0].data_type(), TensorProto::UINT8);
    EXPECT_EQ(out[0].dims_size(), 2);
    EXPECT_EQ(out[0].dims(0), 20000);
    EXPECT_EQ(out[0].dims(1), 64 / (8 / bit_rate) + 4);
  }
}

TEST(OperatorSchemaTest, TensorInferenceNbitBack) {
  for (int bit_rate : {2, 4}) {
    const OpSchema* schema = OpSchemaRegistry::Schema(
        "Fused" + std::to_string(bit_rate) + "BitRowwiseQuantizedToFloat");
    EXPECT_TRUE(schema != nullptr);

    OperatorDef def = CreateOperatorDef(
        "Fused" + std::to_string(bit_rate) + "BitRowwiseQuantizedToFloat",
        "",
        vector<string>{"in"},
        vector<string>{"out"});
    vector<TensorShape> in_shapes(1);
    in_shapes[0].set_data_type(TensorProto::UINT8);
    in_shapes[0].add_dims(20000);
    in_shapes[0].add_dims(36);

    vector<TensorShape> out = schema->InferTensor(def, in_shapes);
    EXPECT_EQ(out.size(), 1);
    EXPECT_EQ(out[0].data_type(), TensorProto::FLOAT);
    EXPECT_EQ(out[0].dims_size(), 2);
    EXPECT_EQ(out[0].dims(0), 20000);
    EXPECT_EQ(out[0].dims(1), (36 - 4) * (8 / bit_rate));
  }
}

TEST(OperatorSchemaTest, TensorInferenceNbitHalfBack) {
  for (int bit_rate : {2, 4}) {
    const OpSchema* schema = OpSchemaRegistry::Schema(
        "Fused" + std::to_string(bit_rate) + "BitRowwiseQuantizedToHalf");
    EXPECT_TRUE(schema != nullptr);

    OperatorDef def = CreateOperatorDef(
        "Fused" + std::to_string(bit_rate) + "BitRowwiseQuantizedToHalf",
        "",
        vector<string>{"in"},
        vector<string>{"out"});
    vector<TensorShape> in_shapes(1);
    in_shapes[0].set_data_type(TensorProto::UINT8);
    in_shapes[0].add_dims(20000);
    in_shapes[0].add_dims(36);

    vector<TensorShape> out = schema->InferTensor(def, in_shapes);
    EXPECT_EQ(out.size(), 1);
    EXPECT_EQ(out[0].data_type(), TensorProto::FLOAT16);
    EXPECT_EQ(out[0].dims_size(), 2);
    EXPECT_EQ(out[0].dims(0), 20000);
    EXPECT_EQ(out[0].dims(1), (36 - 4) * (8 / bit_rate));
  }
}

} // namespace caffe2