1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
import numpy as np
from caffe2.python import core, workspace
from hypothesis import given, settings, strategies as st
def batched_boarders_and_data(
data_min_size=5,
data_max_size=10,
examples_min_number=1,
examples_max_number=4,
example_min_size=1,
example_max_size=3,
dtype=np.float32,
elements=None,
):
dims_ = st.tuples(
st.integers(min_value=data_min_size, max_value=data_max_size),
st.integers(min_value=examples_min_number, max_value=examples_max_number),
st.integers(min_value=example_min_size, max_value=example_max_size),
)
return dims_.flatmap(
lambda dims: st.tuples(
hu.arrays(
[dims[1], dims[2], 2],
dtype=np.int32,
elements=st.integers(min_value=0, max_value=dims[0]),
),
hu.arrays([dims[0]], dtype, elements),
)
)
@st.composite
def _tensor_splits(draw):
lengths = draw(st.lists(st.integers(1, 5), min_size=1, max_size=10))
batch_size = draw(st.integers(1, 5))
element_pairs = [
(batch, r) for batch in range(batch_size) for r in range(len(lengths))
]
perm = draw(st.permutations(element_pairs))
perm = perm[:-1] # skip one range
ranges = [[(0, 0)] * len(lengths) for _ in range(batch_size)]
offset = 0
for pair in perm:
ranges[pair[0]][pair[1]] = (offset, lengths[pair[1]])
offset += lengths[pair[1]]
data = draw(
st.lists(
st.floats(min_value=-1.0, max_value=1.0), min_size=offset, max_size=offset
)
)
key = draw(st.permutations(range(offset)))
return (
np.array(data).astype(np.float32),
np.array(ranges),
np.array(lengths),
np.array(key).astype(np.int64),
)
@st.composite
def _bad_tensor_splits(draw):
lengths = draw(st.lists(st.integers(4, 6), min_size=4, max_size=4))
batch_size = 4
element_pairs = [
(batch, r) for batch in range(batch_size) for r in range(len(lengths))
]
perm = draw(st.permutations(element_pairs))
ranges = [[(0, 0)] * len(lengths) for _ in range(batch_size)]
offset = 0
# Inject some bad samples depending on the batch.
# Batch 2: length is set to 0. This way, 25% of the samples are empty.
# Batch 0-1: length is set to half the original length. This way, 50% of the
# samples are of mismatched length.
for pair in perm:
if pair[0] == 2:
length = 0
elif pair[0] <= 1:
length = lengths[pair[1]] // 2
else:
length = lengths[pair[1]]
ranges[pair[0]][pair[1]] = (offset, length)
offset += length
data = draw(
st.lists(
st.floats(min_value=-1.0, max_value=1.0), min_size=offset, max_size=offset
)
)
key = draw(st.permutations(range(offset)))
return (
np.array(data).astype(np.float32),
np.array(ranges),
np.array(lengths),
np.array(key).astype(np.int64),
)
def gather_ranges(data, ranges):
lengths = []
output = []
for example_ranges in ranges:
length = 0
for range in example_ranges:
assert len(range) == 2
output.extend(data[range[0] : range[0] + range[1]])
length += range[1]
lengths.append(length)
return output, lengths
def gather_ranges_to_dense(data, ranges, lengths):
outputs = []
assert len(ranges)
batch_size = len(ranges)
assert len(ranges[0])
num_ranges = len(ranges[0])
assert ranges.shape[2] == 2
for i in range(num_ranges):
out = []
for j in range(batch_size):
start, length = ranges[j][i]
if not length:
out.append([0] * lengths[i])
else:
assert length == lengths[i]
out.append(data[start : start + length])
outputs.append(np.array(out))
return outputs
def gather_ranges_to_dense_with_key(data, ranges, key, lengths):
outputs = []
assert len(ranges)
batch_size = len(ranges)
assert len(ranges[0])
num_ranges = len(ranges[0])
assert ranges.shape[2] == 2
for i in range(num_ranges):
out = []
for j in range(batch_size):
start, length = ranges[j][i]
if not length:
out.append([0] * lengths[i])
else:
assert length == lengths[i]
key_data_list = zip(
key[start : start + length], data[start : start + length]
)
sorted_key_data_list = sorted(key_data_list, key=lambda x: x[0])
sorted_data = [d for (k, d) in sorted_key_data_list]
out.append(sorted_data)
outputs.append(np.array(out))
return outputs
class TestGatherRanges(serial.SerializedTestCase):
@given(boarders_and_data=batched_boarders_and_data(), **hu.gcs_cpu_only)
@settings(deadline=10000)
def test_gather_ranges(self, boarders_and_data, gc, dc):
boarders, data = boarders_and_data
def boarders_to_range(boarders):
assert len(boarders) == 2
boarders = sorted(boarders)
return [boarders[0], boarders[1] - boarders[0]]
ranges = np.apply_along_axis(boarders_to_range, 2, boarders)
self.assertReferenceChecks(
device_option=gc,
op=core.CreateOperator(
"GatherRanges", ["data", "ranges"], ["output", "lengths"]
),
inputs=[data, ranges],
reference=gather_ranges,
)
@given(tensor_splits=_tensor_splits(), **hu.gcs_cpu_only)
@settings(deadline=10000)
def test_gather_ranges_split(self, tensor_splits, gc, dc):
data, ranges, lengths, _ = tensor_splits
self.assertReferenceChecks(
device_option=gc,
op=core.CreateOperator(
"GatherRangesToDense",
["data", "ranges"],
["X_{}".format(i) for i in range(len(lengths))],
lengths=lengths,
),
inputs=[data, ranges, lengths],
reference=gather_ranges_to_dense,
)
@given(tensor_splits=_tensor_splits(), **hu.gcs_cpu_only)
def test_gather_ranges_with_key_split(self, tensor_splits, gc, dc):
data, ranges, lengths, key = tensor_splits
self.assertReferenceChecks(
device_option=gc,
op=core.CreateOperator(
"GatherRangesToDense",
["data", "ranges", "key"],
["X_{}".format(i) for i in range(len(lengths))],
lengths=lengths,
),
inputs=[data, ranges, key, lengths],
reference=gather_ranges_to_dense_with_key,
)
def test_shape_and_type_inference(self):
with hu.temp_workspace("shape_type_inf_int32"):
net = core.Net("test_net")
net.ConstantFill([], "ranges", shape=[3, 5, 2], dtype=core.DataType.INT32)
net.ConstantFill([], "values", shape=[64], dtype=core.DataType.INT64)
net.GatherRanges(["values", "ranges"], ["values_output", "lengths_output"])
(shapes, types) = workspace.InferShapesAndTypes([net], {})
self.assertEqual(shapes["values_output"], [64])
self.assertEqual(types["values_output"], core.DataType.INT64)
self.assertEqual(shapes["lengths_output"], [3])
self.assertEqual(types["lengths_output"], core.DataType.INT32)
@given(tensor_splits=_bad_tensor_splits(), **hu.gcs_cpu_only)
@settings(deadline=10000)
def test_empty_range_check(self, tensor_splits, gc, dc):
data, ranges, lengths, key = tensor_splits
workspace.FeedBlob("data", data)
workspace.FeedBlob("ranges", ranges)
workspace.FeedBlob("key", key)
def getOpWithThreshold(
min_observation=2, max_mismatched_ratio=0.5, max_empty_ratio=None
):
return core.CreateOperator(
"GatherRangesToDense",
["data", "ranges", "key"],
["X_{}".format(i) for i in range(len(lengths))],
lengths=lengths,
min_observation=min_observation,
max_mismatched_ratio=max_mismatched_ratio,
max_empty_ratio=max_empty_ratio,
)
workspace.RunOperatorOnce(getOpWithThreshold())
workspace.RunOperatorOnce(
getOpWithThreshold(max_mismatched_ratio=0.3, min_observation=50)
)
with self.assertRaises(RuntimeError):
workspace.RunOperatorOnce(
getOpWithThreshold(max_mismatched_ratio=0.3, min_observation=5)
)
with self.assertRaises(RuntimeError):
workspace.RunOperatorOnce(
getOpWithThreshold(min_observation=50, max_empty_ratio=0.01)
)
if __name__ == "__main__":
import unittest
unittest.main()
|