File: glu_op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (45 lines) | stat: -rw-r--r-- 1,212 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45





from caffe2.python import core
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
from hypothesis import given, settings
import hypothesis.strategies as st
import numpy as np

import unittest


@st.composite
def _glu_old_input(draw):
    dims = draw(st.lists(st.integers(min_value=1, max_value=5), min_size=1, max_size=3))
    axis = draw(st.integers(min_value=0, max_value=len(dims)))
    # The axis dimension must be divisible by two
    axis_dim = 2 * draw(st.integers(min_value=1, max_value=2))
    dims.insert(axis, axis_dim)
    X = draw(hu.arrays(dims, np.float32, None))
    return (X, axis)


class TestGlu(serial.SerializedTestCase):
    @given(
        X_axis=_glu_old_input(),
        **hu.gcs
    )
    @settings(deadline=10000)
    def test_glu_old(self, X_axis, gc, dc):
        X, axis = X_axis

        def glu_ref(X):
            x1, x2 = np.split(X, [X.shape[axis] // 2], axis=axis)
            Y = x1 * (1. / (1. + np.exp(-x2)))
            return [Y]

        op = core.CreateOperator("Glu", ["X"], ["Y"], dim=axis)
        self.assertReferenceChecks(gc, op, [X], glu_ref)

if __name__ == "__main__":
    unittest.main()