1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
from caffe2.python import core
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
from hypothesis import given, settings
import hypothesis.strategies as st
import numpy as np
import unittest
class TestGroupNormOp(serial.SerializedTestCase):
def group_norm_nchw_ref(self, X, gamma, beta, group, epsilon):
dims = X.shape
N = dims[0]
C = dims[1]
G = group
D = int(C / G)
X = X.reshape(N, G, D, -1)
mu = np.mean(X, axis=(2, 3), keepdims=True)
std = np.sqrt((np.var(X, axis=(2, 3), keepdims=True) + epsilon))
gamma = gamma.reshape(G, D, 1)
beta = beta.reshape(G, D, 1)
Y = gamma * (X - mu) / std + beta
return [Y.reshape(dims), mu.reshape(N, G), (1.0 / std).reshape(N, G)]
def group_norm_nhwc_ref(self, X, gamma, beta, group, epsilon):
dims = X.shape
N = dims[0]
C = dims[-1]
G = group
D = int(C / G)
X = X.reshape(N, -1, G, D)
mu = np.mean(X, axis=(1, 3), keepdims=True)
std = np.sqrt((np.var(X, axis=(1, 3), keepdims=True) + epsilon))
gamma = gamma.reshape(G, D)
beta = beta.reshape(G, D)
Y = gamma * (X - mu) / std + beta
return [Y.reshape(dims), mu.reshape(N, G), (1.0 / std).reshape(N, G)]
@serial.given(
N=st.integers(1, 5), G=st.integers(1, 5), D=st.integers(1, 5),
H=st.integers(2, 5), W=st.integers(2, 5),
epsilon=st.floats(min_value=1e-5, max_value=1e-4),
order=st.sampled_from(["NCHW", "NHWC"]), **hu.gcs)
def test_group_norm_2d(
self, N, G, D, H, W, epsilon, order, gc, dc):
op = core.CreateOperator(
"GroupNorm",
["X", "gamma", "beta"],
["Y", "mean", "inv_std"],
group=G,
epsilon=epsilon,
order=order,
)
C = G * D
if order == "NCHW":
X = np.random.randn(N, C, H, W).astype(np.float32) + 1.0
else:
X = np.random.randn(N, H, W, C).astype(np.float32) + 1.0
gamma = np.random.randn(C).astype(np.float32)
beta = np.random.randn(C).astype(np.float32)
inputs = [X, gamma, beta]
def ref_op(X, gamma, beta):
if order == "NCHW":
return self.group_norm_nchw_ref(X, gamma, beta, G, epsilon)
else:
return self.group_norm_nhwc_ref(X, gamma, beta, G, epsilon)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=inputs,
reference=ref_op,
threshold=5e-3,
)
self.assertDeviceChecks(dc, op, inputs, [0, 1, 2])
@given(N=st.integers(1, 5), G=st.integers(1, 3), D=st.integers(2, 3),
T=st.integers(2, 4), H=st.integers(2, 4), W=st.integers(2, 4),
epsilon=st.floats(min_value=1e-5, max_value=1e-4),
order=st.sampled_from(["NCHW", "NHWC"]), **hu.gcs)
def test_group_norm_3d(
self, N, G, D, T, H, W, epsilon, order, gc, dc):
op = core.CreateOperator(
"GroupNorm",
["X", "gamma", "beta"],
["Y", "mean", "inv_std"],
group=G,
epsilon=epsilon,
order=order,
)
C = G * D
if order == "NCHW":
X = np.random.randn(N, C, T, H, W).astype(np.float32) + 1.0
else:
X = np.random.randn(N, T, H, W, C).astype(np.float32) + 1.0
gamma = np.random.randn(C).astype(np.float32)
beta = np.random.randn(C).astype(np.float32)
inputs = [X, gamma, beta]
def ref_op(X, gamma, beta):
if order == "NCHW":
return self.group_norm_nchw_ref(X, gamma, beta, G, epsilon)
else:
return self.group_norm_nhwc_ref(X, gamma, beta, G, epsilon)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=inputs,
reference=ref_op,
threshold=5e-3,
)
self.assertDeviceChecks(dc, op, inputs, [0, 1, 2])
@given(N=st.integers(1, 5), G=st.integers(1, 5), D=st.integers(2, 2),
H=st.integers(2, 5), W=st.integers(2, 5),
epsilon=st.floats(min_value=1e-5, max_value=1e-4),
order=st.sampled_from(["NCHW", "NHWC"]), **hu.gcs)
@settings(deadline=10000)
def test_group_norm_grad(
self, N, G, D, H, W, epsilon, order, gc, dc):
op = core.CreateOperator(
"GroupNorm",
["X", "gamma", "beta"],
["Y", "mean", "inv_std"],
group=G,
epsilon=epsilon,
order=order,
)
C = G * D
X = np.arange(N * C * H * W).astype(np.float32)
np.random.shuffle(X)
if order == "NCHW":
X = X.reshape((N, C, H, W))
else:
X = X.reshape((N, H, W, C))
gamma = np.random.randn(C).astype(np.float32)
beta = np.random.randn(C).astype(np.float32)
inputs = [X, gamma, beta]
for i in range(len(inputs)):
self.assertGradientChecks(gc, op, inputs, i, [0])
if __name__ == "__main__":
unittest.main()
|