File: gru_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (389 lines) | stat: -rw-r--r-- 12,932 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389





from caffe2.python import workspace, core, scope, gru_cell
from caffe2.python.model_helper import ModelHelper
from caffe2.python.rnn.rnn_cell_test_util import sigmoid, tanh, _prepare_rnn
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
from caffe2.proto import caffe2_pb2

from functools import partial
from hypothesis import given
from hypothesis import settings as ht_settings
import hypothesis.strategies as st
import numpy as np
import unittest


def gru_unit(*args, **kwargs):
    '''
    Implements one GRU unit, for one time step

    Shapes:
    hidden_t_prev.shape     = (1, N, D)
    gates_out_t.shape       = (1, N, G)
    seq_lenths.shape        = (N,)
    '''

    drop_states = kwargs.get('drop_states', False)
    sequence_lengths = kwargs.get('sequence_lengths', True)

    if sequence_lengths:
        hidden_t_prev, gates_out_t, seq_lengths, timestep = args
    else:
        hidden_t_prev, gates_out_t, timestep = args

    N = hidden_t_prev.shape[1]
    D = hidden_t_prev.shape[2]
    G = gates_out_t.shape[2]
    t = (timestep * np.ones(shape=(N, D))).astype(np.int32)
    assert t.shape == (N, D)
    assert G == 3 * D
    # Calculate reset, update, and output gates separately
    # because output gate depends on reset gate.
    gates_out_t = gates_out_t.reshape(N, 3, D)
    reset_gate_t = gates_out_t[:, 0, :].reshape(N, D)
    update_gate_t = gates_out_t[:, 1, :].reshape(N, D)
    output_gate_t = gates_out_t[:, 2, :].reshape(N, D)

    # Calculate gate outputs.
    reset_gate_t = sigmoid(reset_gate_t)
    update_gate_t = sigmoid(update_gate_t)
    output_gate_t = tanh(output_gate_t)

    if sequence_lengths:
        seq_lengths = (np.ones(shape=(N, D)) *
                       seq_lengths.reshape(N, 1)).astype(np.int32)
        assert seq_lengths.shape == (N, D)
        valid = (t < seq_lengths).astype(np.int32)
    else:
        valid = np.ones(shape=(N, D))
    assert valid.shape == (N, D)
    hidden_t = update_gate_t * hidden_t_prev + \
        (1 - update_gate_t) * output_gate_t
    hidden_t = hidden_t * valid + hidden_t_prev * \
        (1 - valid) * (1 - drop_states)
    hidden_t = hidden_t.reshape(1, N, D)

    return (hidden_t, )


def gru_reference(input, hidden_input,
                  reset_gate_w, reset_gate_b,
                  update_gate_w, update_gate_b,
                  output_gate_w, output_gate_b,
                  seq_lengths, drop_states=False,
                  linear_before_reset=False):
    D = hidden_input.shape[hidden_input.ndim - 1]
    T = input.shape[0]
    N = input.shape[1]
    G = input.shape[2]
    print("Dimensions: T= ", T, " N= ", N, " G= ", G, " D= ", D)
    hidden = np.zeros(shape=(T + 1, N, D))
    hidden[0, :, :] = hidden_input

    for t in range(T):
        input_t = input[t].reshape(1, N, G)
        hidden_t_prev = hidden[t].reshape(1, N, D)

        # Split input contributions for three gates.
        input_t = input_t.reshape(N, 3, D)
        input_reset = input_t[:, 0, :].reshape(N, D)
        input_update = input_t[:, 1, :].reshape(N, D)
        input_output = input_t[:, 2, :].reshape(N, D)

        reset_gate = np.dot(hidden_t_prev, reset_gate_w.T) + reset_gate_b
        reset_gate = reset_gate + input_reset

        update_gate = np.dot(hidden_t_prev, update_gate_w.T) + update_gate_b
        update_gate = update_gate + input_update

        if linear_before_reset:
            with_linear = np.dot(
                hidden_t_prev, output_gate_w.T) + output_gate_b
            output_gate = sigmoid(reset_gate) * with_linear
        else:
            with_reset = hidden_t_prev * sigmoid(reset_gate)
            output_gate = np.dot(with_reset, output_gate_w.T) + output_gate_b
        output_gate = output_gate + input_output

        gates_out_t = np.concatenate(
            (reset_gate, update_gate, output_gate),
            axis=2,
        )
        print(reset_gate, update_gate, output_gate, gates_out_t, sep="\n")

        (hidden_t, ) = gru_unit(
            hidden_t_prev,
            gates_out_t,
            seq_lengths,
            t,
            drop_states=drop_states
        )
        hidden[t + 1] = hidden_t

    return (
        hidden[1:],
        hidden[-1].reshape(1, N, D),
    )


def gru_unit_op_input():
    '''
    Create input tensor where each dimension is from 1 to 4, ndim=3 and
    last dimension size is a factor of 3

    hidden_t_prev.shape     = (1, N, D)
    '''
    dims_ = st.tuples(
        st.integers(min_value=1, max_value=1),  # 1, one timestep
        st.integers(min_value=1, max_value=4),  # n
        st.integers(min_value=1, max_value=4),  # d
    )

    def create_input(dims):
        dims = list(dims)
        dims[2] *= 3
        return hu.arrays(dims)

    return dims_.flatmap(create_input)


def gru_input():
    '''
    Create input tensor where each dimension is from 1 to 4, ndim=3 and
    last dimension size is a factor of 3
    '''
    dims_ = st.tuples(
        st.integers(min_value=1, max_value=4),  # t
        st.integers(min_value=1, max_value=4),  # n
        st.integers(min_value=1, max_value=4),  # d
    )

    def create_input(dims):
        dims = list(dims)
        dims[2] *= 3
        return hu.arrays(dims)

    return dims_.flatmap(create_input)


def _prepare_gru_unit_op(gc, n, d, outputs_with_grads,
                         forward_only=False, drop_states=False,
                         sequence_lengths=False,
                         two_d_initial_states=None):
    print("Dims: (n,d) = ({},{})".format(n, d))

    def generate_input_state(n, d):
        if two_d_initial_states:
            return np.random.randn(n, d).astype(np.float32)
        else:
            return np.random.randn(1, n, d).astype(np.float32)

    model = ModelHelper(name='external')

    with scope.NameScope("test_name_scope"):
        if sequence_lengths:
            hidden_t_prev, gates_t, seq_lengths, timestep = \
                model.net.AddScopedExternalInputs(
                    "hidden_t_prev",
                    "gates_t",
                    'seq_lengths',
                    "timestep",
                )
        else:
            hidden_t_prev, gates_t, timestep = \
                model.net.AddScopedExternalInputs(
                    "hidden_t_prev",
                    "gates_t",
                    "timestep",
                )
        workspace.FeedBlob(
            hidden_t_prev,
            generate_input_state(n, d).astype(np.float32),
            device_option=gc
        )
        workspace.FeedBlob(
            gates_t,
            generate_input_state(n, 3 * d).astype(np.float32),
            device_option=gc
        )

        if sequence_lengths:
            inputs = [hidden_t_prev, gates_t, seq_lengths, timestep]
        else:
            inputs = [hidden_t_prev, gates_t, timestep]

        hidden_t = model.net.GRUUnit(
            inputs,
            ['hidden_t'],
            forget_bias=0.0,
            drop_states=drop_states,
            sequence_lengths=sequence_lengths,
        )
        model.net.AddExternalOutputs(hidden_t)
        workspace.RunNetOnce(model.param_init_net)

        if sequence_lengths:
            # 10 is used as a magic number to simulate some reasonable timestep
            # and generate some reasonable seq. lengths
            workspace.FeedBlob(
                seq_lengths,
                np.random.randint(1, 10, size=(n,)).astype(np.int32),
                device_option=gc
            )

        workspace.FeedBlob(
            timestep,
            np.random.randint(1, 10, size=(1,)).astype(np.int32),
            device_option=core.DeviceOption(caffe2_pb2.CPU),
        )
        print("Feed {}".format(timestep))

    return hidden_t, model.net


class GRUCellTest(serial.SerializedTestCase):

    # Test just for GRUUnitOp
    @serial.given(
        seed=st.integers(0, 2**32 - 1),
        input_tensor=gru_unit_op_input(),
        fwd_only=st.booleans(),
        drop_states=st.booleans(),
        sequence_lengths=st.booleans(),
        **hu.gcs
    )
    def test_gru_unit_op(self, seed, input_tensor, fwd_only,
                         drop_states, sequence_lengths, gc, dc):
        np.random.seed(seed)
        outputs_with_grads = [0]
        ref = gru_unit
        ref = partial(ref)

        t, n, d = input_tensor.shape
        assert d % 3 == 0
        d = d // 3
        ref = partial(ref, drop_states=drop_states,
                      sequence_lengths=sequence_lengths)

        with core.DeviceScope(gc):
            net = _prepare_gru_unit_op(gc, n, d,
                                       outputs_with_grads=outputs_with_grads,
                                       forward_only=fwd_only,
                                       drop_states=drop_states,
                                       sequence_lengths=sequence_lengths)[1]
        # here we don't provide a real input for the net but just for one of
        # its ops (RecurrentNetworkOp). So have to hardcode this name
        workspace.FeedBlob("test_name_scope/external/recurrent/i2h",
                           input_tensor,
                           device_option=gc)
        print(str(net.Proto()))
        op = net._net.op[-1]
        inputs = [workspace.FetchBlob(name) for name in op.input]

        self.assertReferenceChecks(
            gc,
            op,
            inputs,
            ref,
            input_device_options={"test_name_scope/timestep": hu.cpu_do},
            outputs_to_check=[0],
        )

        # Checking for hidden_prev and gates gradients
        if not fwd_only:
            for param in range(2):
                print("Check param {}".format(param))
                self.assertGradientChecks(
                    device_option=gc,
                    op=op,
                    inputs=inputs,
                    outputs_to_check=param,
                    outputs_with_grads=outputs_with_grads,
                    threshold=0.0001,
                    stepsize=0.005,
                    input_device_options={
                        "test_name_scope/timestep": hu.cpu_do},
                )

    @given(
        seed=st.integers(0, 2**32 - 1),
        input_tensor=gru_input(),
        fwd_only=st.booleans(),
        drop_states=st.booleans(),
        linear_before_reset=st.booleans(),
        **hu.gcs
    )
    @ht_settings(max_examples=20, deadline=None)
    def test_gru_main(self, seed, **kwargs):
        np.random.seed(seed)
        for outputs_with_grads in [[0], [1], [0, 1]]:
            self.gru_base(gru_cell.GRU, gru_reference,
                          outputs_with_grads=outputs_with_grads,
                          **kwargs)

    def gru_base(self, create_rnn, ref, outputs_with_grads,
                 input_tensor, fwd_only, drop_states, linear_before_reset, gc, dc):

        print("GRU test parameters: ", locals())
        t, n, d = input_tensor.shape
        assert d % 3 == 0
        d = d // 3
        ref = partial(ref,
                      drop_states=drop_states,
                      linear_before_reset=linear_before_reset)
        with core.DeviceScope(gc):
            net = _prepare_rnn(
                t, n, d, create_rnn,
                outputs_with_grads=outputs_with_grads,
                memory_optim=False,
                forget_bias=0.0,
                forward_only=fwd_only,
                drop_states=drop_states,
                linear_before_reset=linear_before_reset,
                num_states=1,
            )[1]
        # here we don't provide a real input for the net but just for one of
        # its ops (RecurrentNetworkOp). So have to hardcode this name
        workspace.FeedBlob("test_name_scope/external/recurrent/i2h",
                           input_tensor,
                           device_option=gc)
        op = net._net.op[-1]
        inputs = [workspace.FetchBlob(name) for name in op.input]

        self.assertReferenceChecks(
            gc,
            op,
            inputs,
            ref,
            input_device_options={"test_name_scope/timestep": hu.cpu_do},
            outputs_to_check=list(range(2)),
        )

        # Checking for input, gates_t_w and gates_t_b gradients
        if not fwd_only:
            for param in range(2):
                print("Check param {}".format(param))
                self.assertGradientChecks(
                    device_option=gc,
                    op=op,
                    inputs=inputs,
                    outputs_to_check=param,
                    outputs_with_grads=outputs_with_grads,
                    threshold=0.001,
                    stepsize=0.005,
                    input_device_options={
                        "test_name_scope/timestep": hu.cpu_do},
                )


if __name__ == "__main__":
    workspace.GlobalInit([
        'caffe2',
        '--caffe2_log_level=0',
    ])
    unittest.main()