1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
from caffe2.python import workspace, core, scope, gru_cell
from caffe2.python.model_helper import ModelHelper
from caffe2.python.rnn.rnn_cell_test_util import sigmoid, tanh, _prepare_rnn
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
from caffe2.proto import caffe2_pb2
from functools import partial
from hypothesis import given
from hypothesis import settings as ht_settings
import hypothesis.strategies as st
import numpy as np
import unittest
def gru_unit(*args, **kwargs):
'''
Implements one GRU unit, for one time step
Shapes:
hidden_t_prev.shape = (1, N, D)
gates_out_t.shape = (1, N, G)
seq_lenths.shape = (N,)
'''
drop_states = kwargs.get('drop_states', False)
sequence_lengths = kwargs.get('sequence_lengths', True)
if sequence_lengths:
hidden_t_prev, gates_out_t, seq_lengths, timestep = args
else:
hidden_t_prev, gates_out_t, timestep = args
N = hidden_t_prev.shape[1]
D = hidden_t_prev.shape[2]
G = gates_out_t.shape[2]
t = (timestep * np.ones(shape=(N, D))).astype(np.int32)
assert t.shape == (N, D)
assert G == 3 * D
# Calculate reset, update, and output gates separately
# because output gate depends on reset gate.
gates_out_t = gates_out_t.reshape(N, 3, D)
reset_gate_t = gates_out_t[:, 0, :].reshape(N, D)
update_gate_t = gates_out_t[:, 1, :].reshape(N, D)
output_gate_t = gates_out_t[:, 2, :].reshape(N, D)
# Calculate gate outputs.
reset_gate_t = sigmoid(reset_gate_t)
update_gate_t = sigmoid(update_gate_t)
output_gate_t = tanh(output_gate_t)
if sequence_lengths:
seq_lengths = (np.ones(shape=(N, D)) *
seq_lengths.reshape(N, 1)).astype(np.int32)
assert seq_lengths.shape == (N, D)
valid = (t < seq_lengths).astype(np.int32)
else:
valid = np.ones(shape=(N, D))
assert valid.shape == (N, D)
hidden_t = update_gate_t * hidden_t_prev + \
(1 - update_gate_t) * output_gate_t
hidden_t = hidden_t * valid + hidden_t_prev * \
(1 - valid) * (1 - drop_states)
hidden_t = hidden_t.reshape(1, N, D)
return (hidden_t, )
def gru_reference(input, hidden_input,
reset_gate_w, reset_gate_b,
update_gate_w, update_gate_b,
output_gate_w, output_gate_b,
seq_lengths, drop_states=False,
linear_before_reset=False):
D = hidden_input.shape[hidden_input.ndim - 1]
T = input.shape[0]
N = input.shape[1]
G = input.shape[2]
print("Dimensions: T= ", T, " N= ", N, " G= ", G, " D= ", D)
hidden = np.zeros(shape=(T + 1, N, D))
hidden[0, :, :] = hidden_input
for t in range(T):
input_t = input[t].reshape(1, N, G)
hidden_t_prev = hidden[t].reshape(1, N, D)
# Split input contributions for three gates.
input_t = input_t.reshape(N, 3, D)
input_reset = input_t[:, 0, :].reshape(N, D)
input_update = input_t[:, 1, :].reshape(N, D)
input_output = input_t[:, 2, :].reshape(N, D)
reset_gate = np.dot(hidden_t_prev, reset_gate_w.T) + reset_gate_b
reset_gate = reset_gate + input_reset
update_gate = np.dot(hidden_t_prev, update_gate_w.T) + update_gate_b
update_gate = update_gate + input_update
if linear_before_reset:
with_linear = np.dot(
hidden_t_prev, output_gate_w.T) + output_gate_b
output_gate = sigmoid(reset_gate) * with_linear
else:
with_reset = hidden_t_prev * sigmoid(reset_gate)
output_gate = np.dot(with_reset, output_gate_w.T) + output_gate_b
output_gate = output_gate + input_output
gates_out_t = np.concatenate(
(reset_gate, update_gate, output_gate),
axis=2,
)
print(reset_gate, update_gate, output_gate, gates_out_t, sep="\n")
(hidden_t, ) = gru_unit(
hidden_t_prev,
gates_out_t,
seq_lengths,
t,
drop_states=drop_states
)
hidden[t + 1] = hidden_t
return (
hidden[1:],
hidden[-1].reshape(1, N, D),
)
def gru_unit_op_input():
'''
Create input tensor where each dimension is from 1 to 4, ndim=3 and
last dimension size is a factor of 3
hidden_t_prev.shape = (1, N, D)
'''
dims_ = st.tuples(
st.integers(min_value=1, max_value=1), # 1, one timestep
st.integers(min_value=1, max_value=4), # n
st.integers(min_value=1, max_value=4), # d
)
def create_input(dims):
dims = list(dims)
dims[2] *= 3
return hu.arrays(dims)
return dims_.flatmap(create_input)
def gru_input():
'''
Create input tensor where each dimension is from 1 to 4, ndim=3 and
last dimension size is a factor of 3
'''
dims_ = st.tuples(
st.integers(min_value=1, max_value=4), # t
st.integers(min_value=1, max_value=4), # n
st.integers(min_value=1, max_value=4), # d
)
def create_input(dims):
dims = list(dims)
dims[2] *= 3
return hu.arrays(dims)
return dims_.flatmap(create_input)
def _prepare_gru_unit_op(gc, n, d, outputs_with_grads,
forward_only=False, drop_states=False,
sequence_lengths=False,
two_d_initial_states=None):
print("Dims: (n,d) = ({},{})".format(n, d))
def generate_input_state(n, d):
if two_d_initial_states:
return np.random.randn(n, d).astype(np.float32)
else:
return np.random.randn(1, n, d).astype(np.float32)
model = ModelHelper(name='external')
with scope.NameScope("test_name_scope"):
if sequence_lengths:
hidden_t_prev, gates_t, seq_lengths, timestep = \
model.net.AddScopedExternalInputs(
"hidden_t_prev",
"gates_t",
'seq_lengths',
"timestep",
)
else:
hidden_t_prev, gates_t, timestep = \
model.net.AddScopedExternalInputs(
"hidden_t_prev",
"gates_t",
"timestep",
)
workspace.FeedBlob(
hidden_t_prev,
generate_input_state(n, d).astype(np.float32),
device_option=gc
)
workspace.FeedBlob(
gates_t,
generate_input_state(n, 3 * d).astype(np.float32),
device_option=gc
)
if sequence_lengths:
inputs = [hidden_t_prev, gates_t, seq_lengths, timestep]
else:
inputs = [hidden_t_prev, gates_t, timestep]
hidden_t = model.net.GRUUnit(
inputs,
['hidden_t'],
forget_bias=0.0,
drop_states=drop_states,
sequence_lengths=sequence_lengths,
)
model.net.AddExternalOutputs(hidden_t)
workspace.RunNetOnce(model.param_init_net)
if sequence_lengths:
# 10 is used as a magic number to simulate some reasonable timestep
# and generate some reasonable seq. lengths
workspace.FeedBlob(
seq_lengths,
np.random.randint(1, 10, size=(n,)).astype(np.int32),
device_option=gc
)
workspace.FeedBlob(
timestep,
np.random.randint(1, 10, size=(1,)).astype(np.int32),
device_option=core.DeviceOption(caffe2_pb2.CPU),
)
print("Feed {}".format(timestep))
return hidden_t, model.net
class GRUCellTest(serial.SerializedTestCase):
# Test just for GRUUnitOp
@serial.given(
seed=st.integers(0, 2**32 - 1),
input_tensor=gru_unit_op_input(),
fwd_only=st.booleans(),
drop_states=st.booleans(),
sequence_lengths=st.booleans(),
**hu.gcs
)
def test_gru_unit_op(self, seed, input_tensor, fwd_only,
drop_states, sequence_lengths, gc, dc):
np.random.seed(seed)
outputs_with_grads = [0]
ref = gru_unit
ref = partial(ref)
t, n, d = input_tensor.shape
assert d % 3 == 0
d = d // 3
ref = partial(ref, drop_states=drop_states,
sequence_lengths=sequence_lengths)
with core.DeviceScope(gc):
net = _prepare_gru_unit_op(gc, n, d,
outputs_with_grads=outputs_with_grads,
forward_only=fwd_only,
drop_states=drop_states,
sequence_lengths=sequence_lengths)[1]
# here we don't provide a real input for the net but just for one of
# its ops (RecurrentNetworkOp). So have to hardcode this name
workspace.FeedBlob("test_name_scope/external/recurrent/i2h",
input_tensor,
device_option=gc)
print(str(net.Proto()))
op = net._net.op[-1]
inputs = [workspace.FetchBlob(name) for name in op.input]
self.assertReferenceChecks(
gc,
op,
inputs,
ref,
input_device_options={"test_name_scope/timestep": hu.cpu_do},
outputs_to_check=[0],
)
# Checking for hidden_prev and gates gradients
if not fwd_only:
for param in range(2):
print("Check param {}".format(param))
self.assertGradientChecks(
device_option=gc,
op=op,
inputs=inputs,
outputs_to_check=param,
outputs_with_grads=outputs_with_grads,
threshold=0.0001,
stepsize=0.005,
input_device_options={
"test_name_scope/timestep": hu.cpu_do},
)
@given(
seed=st.integers(0, 2**32 - 1),
input_tensor=gru_input(),
fwd_only=st.booleans(),
drop_states=st.booleans(),
linear_before_reset=st.booleans(),
**hu.gcs
)
@ht_settings(max_examples=20, deadline=None)
def test_gru_main(self, seed, **kwargs):
np.random.seed(seed)
for outputs_with_grads in [[0], [1], [0, 1]]:
self.gru_base(gru_cell.GRU, gru_reference,
outputs_with_grads=outputs_with_grads,
**kwargs)
def gru_base(self, create_rnn, ref, outputs_with_grads,
input_tensor, fwd_only, drop_states, linear_before_reset, gc, dc):
print("GRU test parameters: ", locals())
t, n, d = input_tensor.shape
assert d % 3 == 0
d = d // 3
ref = partial(ref,
drop_states=drop_states,
linear_before_reset=linear_before_reset)
with core.DeviceScope(gc):
net = _prepare_rnn(
t, n, d, create_rnn,
outputs_with_grads=outputs_with_grads,
memory_optim=False,
forget_bias=0.0,
forward_only=fwd_only,
drop_states=drop_states,
linear_before_reset=linear_before_reset,
num_states=1,
)[1]
# here we don't provide a real input for the net but just for one of
# its ops (RecurrentNetworkOp). So have to hardcode this name
workspace.FeedBlob("test_name_scope/external/recurrent/i2h",
input_tensor,
device_option=gc)
op = net._net.op[-1]
inputs = [workspace.FetchBlob(name) for name in op.input]
self.assertReferenceChecks(
gc,
op,
inputs,
ref,
input_device_options={"test_name_scope/timestep": hu.cpu_do},
outputs_to_check=list(range(2)),
)
# Checking for input, gates_t_w and gates_t_b gradients
if not fwd_only:
for param in range(2):
print("Check param {}".format(param))
self.assertGradientChecks(
device_option=gc,
op=op,
inputs=inputs,
outputs_to_check=param,
outputs_with_grads=outputs_with_grads,
threshold=0.001,
stepsize=0.005,
input_device_options={
"test_name_scope/timestep": hu.cpu_do},
)
if __name__ == "__main__":
workspace.GlobalInit([
'caffe2',
'--caffe2_log_level=0',
])
unittest.main()
|