File: hsm_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (252 lines) | stat: -rw-r--r-- 9,456 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252




from hypothesis import given, settings
import numpy as np
import unittest

from caffe2.proto import caffe2_pb2, hsm_pb2
from caffe2.python import workspace, core, gradient_checker
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.hsm_util as hsmu

# User inputs tree using protobuf file or, in this case, python utils
# The hierarchy in this test looks as shown below. Note that the final subtrees
# (with word_ids as leaves) have been collapsed for visualization
#           *
#         /  \
#        *    5,6,7,8
#       / \
#  0,1,2   3,4
tree = hsm_pb2.TreeProto()
words = [[0, 1, 2], [3, 4], [5, 6, 7, 8]]
node1 = hsmu.create_node_with_words(words[0], "node1")
node2 = hsmu.create_node_with_words(words[1], "node2")
node3 = hsmu.create_node_with_words(words[2], "node3")
node4 = hsmu.create_node_with_nodes([node1, node2], "node4")
node = hsmu.create_node_with_nodes([node4, node3], "node5")
tree.root_node.MergeFrom(node)

# structure:
# node5: [0, 2, ["node4", "node3"]] # offset, length, "node4, node3"
# node4: [2, 2, ["node1", "node2"]]
# node1: [4, 3, [0, 1 ,2]]
# node2: [7, 2, [3, 4]
# node3: [9, 4, [5, 6, 7, 8]
struct = [[0, 2, ["node4", "node3"], "node5"],
            [2, 2, ["node1", "node2"], "node4"],
            [4, 3, [0, 1, 2], "node1"],
            [7, 2, [3, 4], "node2"],
            [9, 4, [5, 6, 7, 8], "node3"]]

# Internal util to translate input tree to list of (word_id,path). serialized
# hierarchy is passed into the operator_def as a string argument,
hierarchy_proto = hsmu.create_hierarchy(tree)
arg = caffe2_pb2.Argument()
arg.name = "hierarchy"
arg.s = hierarchy_proto.SerializeToString()

beam = 5
args_search = []
arg_search = caffe2_pb2.Argument()
arg_search.name = "tree"
arg_search.s = tree.SerializeToString()
args_search.append(arg_search)
arg_search = caffe2_pb2.Argument()
arg_search.name = "beam"
arg_search.f = beam
args_search.append(arg_search)


class TestHsm(hu.HypothesisTestCase):
    def test_hsm_search(self):
        samples = 10
        dim_in = 5
        X = np.random.rand(samples, dim_in).astype(np.float32) - 0.5
        w = np.random.rand(hierarchy_proto.size, dim_in) \
            .astype(np.float32) - 0.5
        b = np.random.rand(hierarchy_proto.size).astype(np.float32) - 0.5
        labels = np.array([np.random.randint(0, 8) for i in range(samples)]) \
            .astype(np.int32)

        workspace.GlobalInit(['caffe2'])
        workspace.FeedBlob("data", X)
        workspace.FeedBlob("weights", w)
        workspace.FeedBlob("bias", b)
        workspace.FeedBlob("labels", labels)
        op = core.CreateOperator(
            'HSoftmaxSearch',
            ['data', 'weights', 'bias'],
            ['names', 'scores'],
            'HSoftmaxSearch',
            arg=args_search)
        workspace.RunOperatorOnce(op)
        names = workspace.FetchBlob('names')
        scores = workspace.FetchBlob('scores')

        def simulation_hsm_search():
            names = []
            scores = []
            for line in struct:
                s, e = line[0], line[0] + line[1]
                score = np.dot(X, w[s:e].transpose()) + b[s:e]
                score = np.exp(score - np.max(score, axis=1, keepdims=True))
                score /= score.sum(axis=1, keepdims=True)
                score = -np.log(score)

                score = score.transpose()
                idx = -1
                for j, n in enumerate(names):
                    if n == line[3]:
                        idx = j
                        score += scores[j]
                if idx == -1:
                    score[score > beam] = np.inf
                else:
                    score[score - scores[idx] > beam] = np.inf

                for i, name in enumerate(line[2]):
                    scores.append(score[i])
                    names.append(name)
            scores = np.vstack(scores)
            return names, scores.transpose()

        p_names, p_scores = simulation_hsm_search()
        idx = np.argsort(p_scores, axis=1)
        p_scores = np.sort(p_scores, axis=1)
        p_names = np.array(p_names)[idx]
        for i in range(names.shape[0]):
            for j in range(names.shape[1]):
                if names[i][j]:
                    self.assertEquals(
                        names[i][j], p_names[i][j].item().encode('utf-8'))
                    self.assertAlmostEqual(
                        scores[i][j], p_scores[i][j], delta=0.001)

    def test_hsm_run_once(self):
        workspace.GlobalInit(['caffe2'])
        workspace.FeedBlob("data",
                           np.random.randn(1000, 100).astype(np.float32))
        workspace.FeedBlob("weights",
                           np.random.randn(1000, 100).astype(np.float32))
        workspace.FeedBlob("bias", np.random.randn(1000).astype(np.float32))
        workspace.FeedBlob("labels", np.random.rand(1000).astype(np.int32) * 9)
        op = core.CreateOperator(
            'HSoftmax',
            ['data', 'weights', 'bias', 'labels'],
            ['output', 'intermediate_output'],
            'HSoftmax',
            arg=[arg])
        self.assertTrue(workspace.RunOperatorOnce(op))

    # Test to check value of sum of squared losses in forward pass for given
    # input
    def test_hsm_forward(self):
        cpu_device_option = caffe2_pb2.DeviceOption()
        grad_checker = gradient_checker.GradientChecker(
            0.01, 0.05, cpu_device_option, "default")
        samples = 9
        dim_in = 5
        X = np.zeros((samples, dim_in)).astype(np.float32) + 1
        w = np.zeros((hierarchy_proto.size, dim_in)).astype(np.float32) + 1
        b = np.array([i for i in range(hierarchy_proto.size)])\
            .astype(np.float32)
        labels = np.array([i for i in range(samples)]).astype(np.int32)

        workspace.GlobalInit(['caffe2'])
        workspace.FeedBlob("data", X)
        workspace.FeedBlob("weights", w)
        workspace.FeedBlob("bias", b)
        workspace.FeedBlob("labels", labels)

        op = core.CreateOperator(
            'HSoftmax',
            ['data', 'weights', 'bias', 'labels'],
            ['output', 'intermediate_output'],
            'HSoftmax',
            arg=[arg])
        grad_ops, g_input = core.GradientRegistry.GetGradientForOp(
            op, [s + '_grad' for s in op.output])

        loss, _ = grad_checker.GetLossAndGrad(
            op, grad_ops, [X, w, b, labels], op.input, 0, g_input[0], [0]
        )
        self.assertAlmostEqual(loss, 44.269, delta=0.001)

    # Test to compare gradient calculated using the gradient operator and the
    # symmetric derivative calculated using Euler Method
    # TODO : convert to both cpu and gpu test when ready.
    @given(**hu.gcs_cpu_only)
    @settings(deadline=10000)
    def test_hsm_gradient(self, gc, dc):
        samples = 10
        dim_in = 5
        X = np.random.rand(samples, dim_in).astype(np.float32) - 0.5
        w = np.random.rand(hierarchy_proto.size, dim_in) \
            .astype(np.float32) - 0.5
        b = np.random.rand(hierarchy_proto.size).astype(np.float32) - 0.5
        labels = np.array([np.random.randint(0, 8) for i in range(samples)]) \
            .astype(np.int32)

        workspace.GlobalInit(['caffe2'])
        workspace.FeedBlob("data", X)
        workspace.FeedBlob("weights", w)
        workspace.FeedBlob("bias", b)
        workspace.FeedBlob("labels", labels)

        op = core.CreateOperator(
            'HSoftmax',
            ['data', 'weights', 'bias', 'labels'],
            ['output', 'intermediate_output'],
            'HSoftmax',
            arg=[arg])

        self.assertDeviceChecks(dc, op, [X, w, b, labels], [0])

        for i in range(3):
            self.assertGradientChecks(gc, op, [X, w, b, labels], i, [0])

    def test_huffman_tree_hierarchy(self):
        workspace.GlobalInit(['caffe2'])
        labelSet = list(range(0, 6))
        counts = [1, 2, 3, 4, 5, 6]
        labels = sum([[l] * c for (l, c) in zip(labelSet, counts)], [])
        Y = np.array(labels).astype(np.int64)
        workspace.FeedBlob("labels", Y)
        arg = caffe2_pb2.Argument()
        arg.name = 'num_classes'
        arg.i = 6
        op = core.CreateOperator(
            'HuffmanTreeHierarchy',
            ['labels'],
            ['huffman_tree'],
            'HuffmanTreeHierarchy',
            arg=[arg])
        workspace.RunOperatorOnce(op)
        huffmanTreeOutput = workspace.FetchBlob('huffman_tree')
        treeOutput = hsm_pb2.TreeProto()
        treeOutput.ParseFromString(huffmanTreeOutput[0])
        treePathOutput = hsmu.create_hierarchy(treeOutput)

        label_to_path = {}
        for path in treePathOutput.paths:
            label_to_path[path.word_id] = path

        def checkPath(label, indices, code):
            path = label_to_path[label]
            self.assertEqual(len(path.path_nodes), len(code))
            self.assertEqual(len(path.path_nodes), len(code))
            for path_node, index, target in \
                    zip(path.path_nodes, indices, code):
                self.assertEqual(path_node.index, index)
                self.assertEqual(path_node.target, target)
        checkPath(0, [0, 4, 6, 8], [1, 0, 0, 0])
        checkPath(1, [0, 4, 6, 8], [1, 0, 0, 1])
        checkPath(2, [0, 4, 6], [1, 0, 1])
        checkPath(3, [0, 2], [0, 0])
        checkPath(4, [0, 2], [0, 1])
        checkPath(5, [0, 4], [1, 1])

if __name__ == '__main__':
    unittest.main()