1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
from hypothesis import given, settings
import numpy as np
import unittest
from caffe2.proto import caffe2_pb2, hsm_pb2
from caffe2.python import workspace, core, gradient_checker
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.hsm_util as hsmu
# User inputs tree using protobuf file or, in this case, python utils
# The hierarchy in this test looks as shown below. Note that the final subtrees
# (with word_ids as leaves) have been collapsed for visualization
# *
# / \
# * 5,6,7,8
# / \
# 0,1,2 3,4
tree = hsm_pb2.TreeProto()
words = [[0, 1, 2], [3, 4], [5, 6, 7, 8]]
node1 = hsmu.create_node_with_words(words[0], "node1")
node2 = hsmu.create_node_with_words(words[1], "node2")
node3 = hsmu.create_node_with_words(words[2], "node3")
node4 = hsmu.create_node_with_nodes([node1, node2], "node4")
node = hsmu.create_node_with_nodes([node4, node3], "node5")
tree.root_node.MergeFrom(node)
# structure:
# node5: [0, 2, ["node4", "node3"]] # offset, length, "node4, node3"
# node4: [2, 2, ["node1", "node2"]]
# node1: [4, 3, [0, 1 ,2]]
# node2: [7, 2, [3, 4]
# node3: [9, 4, [5, 6, 7, 8]
struct = [[0, 2, ["node4", "node3"], "node5"],
[2, 2, ["node1", "node2"], "node4"],
[4, 3, [0, 1, 2], "node1"],
[7, 2, [3, 4], "node2"],
[9, 4, [5, 6, 7, 8], "node3"]]
# Internal util to translate input tree to list of (word_id,path). serialized
# hierarchy is passed into the operator_def as a string argument,
hierarchy_proto = hsmu.create_hierarchy(tree)
arg = caffe2_pb2.Argument()
arg.name = "hierarchy"
arg.s = hierarchy_proto.SerializeToString()
beam = 5
args_search = []
arg_search = caffe2_pb2.Argument()
arg_search.name = "tree"
arg_search.s = tree.SerializeToString()
args_search.append(arg_search)
arg_search = caffe2_pb2.Argument()
arg_search.name = "beam"
arg_search.f = beam
args_search.append(arg_search)
class TestHsm(hu.HypothesisTestCase):
def test_hsm_search(self):
samples = 10
dim_in = 5
X = np.random.rand(samples, dim_in).astype(np.float32) - 0.5
w = np.random.rand(hierarchy_proto.size, dim_in) \
.astype(np.float32) - 0.5
b = np.random.rand(hierarchy_proto.size).astype(np.float32) - 0.5
labels = np.array([np.random.randint(0, 8) for i in range(samples)]) \
.astype(np.int32)
workspace.GlobalInit(['caffe2'])
workspace.FeedBlob("data", X)
workspace.FeedBlob("weights", w)
workspace.FeedBlob("bias", b)
workspace.FeedBlob("labels", labels)
op = core.CreateOperator(
'HSoftmaxSearch',
['data', 'weights', 'bias'],
['names', 'scores'],
'HSoftmaxSearch',
arg=args_search)
workspace.RunOperatorOnce(op)
names = workspace.FetchBlob('names')
scores = workspace.FetchBlob('scores')
def simulation_hsm_search():
names = []
scores = []
for line in struct:
s, e = line[0], line[0] + line[1]
score = np.dot(X, w[s:e].transpose()) + b[s:e]
score = np.exp(score - np.max(score, axis=1, keepdims=True))
score /= score.sum(axis=1, keepdims=True)
score = -np.log(score)
score = score.transpose()
idx = -1
for j, n in enumerate(names):
if n == line[3]:
idx = j
score += scores[j]
if idx == -1:
score[score > beam] = np.inf
else:
score[score - scores[idx] > beam] = np.inf
for i, name in enumerate(line[2]):
scores.append(score[i])
names.append(name)
scores = np.vstack(scores)
return names, scores.transpose()
p_names, p_scores = simulation_hsm_search()
idx = np.argsort(p_scores, axis=1)
p_scores = np.sort(p_scores, axis=1)
p_names = np.array(p_names)[idx]
for i in range(names.shape[0]):
for j in range(names.shape[1]):
if names[i][j]:
self.assertEquals(
names[i][j], p_names[i][j].item().encode('utf-8'))
self.assertAlmostEqual(
scores[i][j], p_scores[i][j], delta=0.001)
def test_hsm_run_once(self):
workspace.GlobalInit(['caffe2'])
workspace.FeedBlob("data",
np.random.randn(1000, 100).astype(np.float32))
workspace.FeedBlob("weights",
np.random.randn(1000, 100).astype(np.float32))
workspace.FeedBlob("bias", np.random.randn(1000).astype(np.float32))
workspace.FeedBlob("labels", np.random.rand(1000).astype(np.int32) * 9)
op = core.CreateOperator(
'HSoftmax',
['data', 'weights', 'bias', 'labels'],
['output', 'intermediate_output'],
'HSoftmax',
arg=[arg])
self.assertTrue(workspace.RunOperatorOnce(op))
# Test to check value of sum of squared losses in forward pass for given
# input
def test_hsm_forward(self):
cpu_device_option = caffe2_pb2.DeviceOption()
grad_checker = gradient_checker.GradientChecker(
0.01, 0.05, cpu_device_option, "default")
samples = 9
dim_in = 5
X = np.zeros((samples, dim_in)).astype(np.float32) + 1
w = np.zeros((hierarchy_proto.size, dim_in)).astype(np.float32) + 1
b = np.array([i for i in range(hierarchy_proto.size)])\
.astype(np.float32)
labels = np.array([i for i in range(samples)]).astype(np.int32)
workspace.GlobalInit(['caffe2'])
workspace.FeedBlob("data", X)
workspace.FeedBlob("weights", w)
workspace.FeedBlob("bias", b)
workspace.FeedBlob("labels", labels)
op = core.CreateOperator(
'HSoftmax',
['data', 'weights', 'bias', 'labels'],
['output', 'intermediate_output'],
'HSoftmax',
arg=[arg])
grad_ops, g_input = core.GradientRegistry.GetGradientForOp(
op, [s + '_grad' for s in op.output])
loss, _ = grad_checker.GetLossAndGrad(
op, grad_ops, [X, w, b, labels], op.input, 0, g_input[0], [0]
)
self.assertAlmostEqual(loss, 44.269, delta=0.001)
# Test to compare gradient calculated using the gradient operator and the
# symmetric derivative calculated using Euler Method
# TODO : convert to both cpu and gpu test when ready.
@given(**hu.gcs_cpu_only)
@settings(deadline=10000)
def test_hsm_gradient(self, gc, dc):
samples = 10
dim_in = 5
X = np.random.rand(samples, dim_in).astype(np.float32) - 0.5
w = np.random.rand(hierarchy_proto.size, dim_in) \
.astype(np.float32) - 0.5
b = np.random.rand(hierarchy_proto.size).astype(np.float32) - 0.5
labels = np.array([np.random.randint(0, 8) for i in range(samples)]) \
.astype(np.int32)
workspace.GlobalInit(['caffe2'])
workspace.FeedBlob("data", X)
workspace.FeedBlob("weights", w)
workspace.FeedBlob("bias", b)
workspace.FeedBlob("labels", labels)
op = core.CreateOperator(
'HSoftmax',
['data', 'weights', 'bias', 'labels'],
['output', 'intermediate_output'],
'HSoftmax',
arg=[arg])
self.assertDeviceChecks(dc, op, [X, w, b, labels], [0])
for i in range(3):
self.assertGradientChecks(gc, op, [X, w, b, labels], i, [0])
def test_huffman_tree_hierarchy(self):
workspace.GlobalInit(['caffe2'])
labelSet = list(range(0, 6))
counts = [1, 2, 3, 4, 5, 6]
labels = sum([[l] * c for (l, c) in zip(labelSet, counts)], [])
Y = np.array(labels).astype(np.int64)
workspace.FeedBlob("labels", Y)
arg = caffe2_pb2.Argument()
arg.name = 'num_classes'
arg.i = 6
op = core.CreateOperator(
'HuffmanTreeHierarchy',
['labels'],
['huffman_tree'],
'HuffmanTreeHierarchy',
arg=[arg])
workspace.RunOperatorOnce(op)
huffmanTreeOutput = workspace.FetchBlob('huffman_tree')
treeOutput = hsm_pb2.TreeProto()
treeOutput.ParseFromString(huffmanTreeOutput[0])
treePathOutput = hsmu.create_hierarchy(treeOutput)
label_to_path = {}
for path in treePathOutput.paths:
label_to_path[path.word_id] = path
def checkPath(label, indices, code):
path = label_to_path[label]
self.assertEqual(len(path.path_nodes), len(code))
self.assertEqual(len(path.path_nodes), len(code))
for path_node, index, target in \
zip(path.path_nodes, indices, code):
self.assertEqual(path_node.index, index)
self.assertEqual(path_node.target, target)
checkPath(0, [0, 4, 6, 8], [1, 0, 0, 0])
checkPath(1, [0, 4, 6, 8], [1, 0, 0, 1])
checkPath(2, [0, 4, 6], [1, 0, 1])
checkPath(3, [0, 2], [0, 0])
checkPath(4, [0, 2], [0, 1])
checkPath(5, [0, 4], [1, 1])
if __name__ == '__main__':
unittest.main()
|