File: im2col_col2im_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (138 lines) | stat: -rw-r--r-- 4,311 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138





from caffe2.python import core
from hypothesis import assume, given, settings

import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np


class TestReduceFrontSum(hu.HypothesisTestCase):
    @given(batch_size=st.integers(1, 3),
           stride=st.integers(1, 3),
           pad=st.integers(0, 3),
           kernel=st.integers(1, 5),
           dilation=st.integers(1, 3),
           size=st.integers(7, 10),
           channels=st.integers(1, 8),
           **hu.gcs)
    def test_im2col_layout(self, batch_size, stride, pad, kernel, dilation,
                           size, channels, gc, dc):

        dkernel = (dilation * (kernel - 1) + 1)
        assume(size >= dkernel)

        NCHW_TO_NHWC = (0, 2, 3, 1)
        NHWC_TO_NCHW = (0, 3, 1, 2)
        COL_NHWC_TO_NCHW = (4, 2, 3, 0, 1)

        N = batch_size
        C = channels
        H = size
        W = size

        out_h = int((H + (2 * pad) - dkernel) / stride + 1)
        out_w = int((W + (2 * pad) - dkernel) / stride + 1)

        im_nchw = np.random.rand(N, C, H, W).astype(np.float32) - 0.5
        im_nhwc = im_nchw.transpose(NCHW_TO_NHWC)

        op_im2col_nchw = core.CreateOperator(
            "Im2Col",
            ["im_nchw"], ["col_nchw"],
            stride=stride,
            kernel=kernel,
            dilation=dilation,
            pad=pad,
            order="NCHW",
            device_option=gc)

        op_im2col_nhwc = core.CreateOperator(
            "Im2Col",
            ["im_nhwc"], ["col_nhwc"],
            stride=stride,
            kernel=kernel,
            dilation=dilation,
            pad=pad,
            order="NHWC",
            device_option=gc)

        self.ws.create_blob("im_nchw").feed(im_nchw, device_option=gc)
        self.ws.create_blob("im_nhwc").feed(im_nhwc, device_option=gc)
        self.ws.run(op_im2col_nchw)
        self.ws.run(op_im2col_nhwc)

        # there is probably a clever way to spell this in np
        col_nchw = self.ws.blobs["col_nchw"].fetch()
        col_nhwc = self.ws.blobs["col_nhwc"].fetch()
        col_nchw_ = col_nchw.reshape(N, C, kernel, kernel, out_h, out_w)
        col_nhwc_ = col_nhwc.reshape(N, out_h, out_w, kernel, kernel, C)
        for i in range(0, N):
            np.testing.assert_allclose(
                col_nchw_[i],
                col_nhwc_[i].transpose(COL_NHWC_TO_NCHW),
                atol=1e-4,
                rtol=1e-4)

        op_col2im_nchw = core.CreateOperator(
            "Col2Im",
            ["col_nchw", "im_nchw"],
            ["out_nchw"],
            stride=stride,
            kernel=kernel,
            dilation=dilation,
            pad=pad,
            order="NCHW",
            device_option=gc)

        op_col2im_nhwc = core.CreateOperator(
            "Col2Im",
            ["col_nhwc", "im_nhwc"],
            ["out_nhwc"],
            stride=stride,
            kernel=kernel,
            dilation=dilation,
            pad=pad,
            order="NHWC",
            device_option=gc)

        self.ws.run(op_col2im_nchw)
        self.ws.run(op_col2im_nhwc)

        out_nchw = self.ws.blobs["out_nchw"].fetch()
        out_nhwc = self.ws.blobs["out_nhwc"].fetch()
        np.testing.assert_allclose(
            out_nchw,
            out_nhwc.transpose(NHWC_TO_NCHW),
            atol=1e-4,
            rtol=1e-4)

    @given(batch_size=st.integers(1, 3),
           stride=st.integers(1, 3),
           pad=st.integers(0, 3),
           kernel=st.integers(1, 5),
           dilation=st.integers(1, 3),
           size=st.integers(7, 10),
           channels=st.integers(1, 8),
           order=st.sampled_from(["NCHW"]),
           **hu.gcs)
    @settings(deadline=10000)
    def test_col2im_gradients(self, batch_size, stride, pad, kernel,
                              dilation, size, channels, order, gc, dc):
        assume(size >= dilation * (kernel - 1) + 1)
        op = core.CreateOperator(
            "Im2Col",
            ["X"], ["Y"],
            stride=stride,
            kernel=kernel,
            dilation=dilation,
            pad=pad,
            order=order,
            device_option=gc)
        X = np.random.rand(batch_size, channels, size, size).astype(np.float32)
        self.assertGradientChecks(gc, op, [X], 0, [0])
        return