File: instance_norm_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (276 lines) | stat: -rw-r--r-- 9,917 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276




import numpy as np
from hypothesis import given, assume, settings
import hypothesis.strategies as st

from caffe2.python import core, model_helper, brew, utils
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial

import unittest


class TestInstanceNorm(serial.SerializedTestCase):

    def _get_inputs(self, N, C, H, W, order):
        input_data = np.random.rand(N, C, H, W).astype(np.float32)
        if order == 'NHWC':
            # Allocate in the same order as NCHW and transpose to make sure
            # the inputs are identical on freshly-seeded calls.
            input_data = utils.NCHW2NHWC(input_data)
        elif order != "NCHW":
            raise Exception('unknown order type ({})'.format(order))

        scale_data = np.random.rand(C).astype(np.float32)
        bias_data = np.random.rand(C).astype(np.float32)
        return input_data, scale_data, bias_data

    def _get_op(self, device_option, store_mean, store_inv_stdev, epsilon,
                order, inplace=False):
        outputs = ['output' if not inplace else "input"]
        if store_mean or store_inv_stdev:
            outputs += ['mean']
        if store_inv_stdev:
            outputs += ['inv_stdev']
        op = core.CreateOperator(
            'InstanceNorm',
            ['input', 'scale', 'bias'],
            outputs,
            order=order,
            epsilon=epsilon,
            device_option=device_option)
        return op

    def _feed_inputs(self, input_blobs, device_option):
        names = ['input', 'scale', 'bias']
        for name, blob in zip(names, input_blobs):
            self.ws.create_blob(name).feed(blob, device_option=device_option)

    @given(gc=hu.gcs['gc'],
           dc=hu.gcs['dc'],
           N=st.integers(1, 4),
           C=st.integers(1, 4),
           H=st.integers(2, 4),
           W=st.integers(2, 4),
           order=st.sampled_from(['NCHW', 'NHWC']),
           epsilon=st.floats(1e-6, 1e-4),
           store_mean=st.booleans(),
           seed=st.integers(0, 1000),
           store_inv_stdev=st.booleans())
    @settings(deadline=10000)
    def test_instance_norm_gradients(
            self, gc, dc, N, C, H, W, order, store_mean, store_inv_stdev,
            epsilon, seed):
        np.random.seed(seed)

        # force store_inv_stdev if store_mean to match existing forward pass
        # implementation
        store_inv_stdev |= store_mean

        op = self._get_op(
            device_option=gc,
            store_mean=store_mean,
            store_inv_stdev=store_inv_stdev,
            epsilon=epsilon,
            order=order)

        input_data = np.arange(N * C * H * W).astype(np.float32)
        np.random.shuffle(input_data)
        if order == "NCHW":
            input_data = input_data.reshape(N, C, H, W)
        else:
            input_data = input_data.reshape(N, H, W, C)
        scale_data = np.random.randn(C).astype(np.float32)
        bias_data = np.random.randn(C).astype(np.float32)
        input_blobs = (input_data, scale_data, bias_data)

        output_indices = [0]
        # if store_inv_stdev is turned on, store_mean must also be forced on
        if store_mean or store_inv_stdev:
            output_indices += [1]
        if store_inv_stdev:
            output_indices += [2]
        self.assertDeviceChecks(dc, op, input_blobs, output_indices)
        # The gradient only flows from output #0 since the other two only
        # store the temporary mean and inv_stdev buffers.
        # Check dl/dinput
        self.assertGradientChecks(gc, op, input_blobs, 0, [0])
        # Check dl/dscale
        self.assertGradientChecks(gc, op, input_blobs, 1, [0])
        # Check dl/dbias
        self.assertGradientChecks(gc, op, input_blobs, 2, [0])

    @given(gc=hu.gcs['gc'],
           dc=hu.gcs['dc'],
           N=st.integers(2, 10),
           C=st.integers(3, 10),
           H=st.integers(5, 10),
           W=st.integers(7, 10),
           seed=st.integers(0, 1000),
           epsilon=st.floats(1e-6, 1e-4),
           store_mean=st.booleans(),
           store_inv_stdev=st.booleans())
    def test_instance_norm_layout(self, gc, dc, N, C, H, W, store_mean,
                                  store_inv_stdev, epsilon, seed):
        # force store_inv_stdev if store_mean to match existing forward pass
        # implementation
        store_inv_stdev |= store_mean

        outputs = {}
        for order in ('NCHW', 'NHWC'):
            np.random.seed(seed)
            input_blobs = self._get_inputs(N, C, H, W, order)
            self._feed_inputs(input_blobs, device_option=gc)
            op = self._get_op(
                device_option=gc,
                store_mean=store_mean,
                store_inv_stdev=store_inv_stdev,
                epsilon=epsilon,
                order=order)
            self.ws.run(op)
            outputs[order] = self.ws.blobs['output'].fetch()
        np.testing.assert_allclose(
            outputs['NCHW'],
            utils.NHWC2NCHW(outputs["NHWC"]),
            atol=1e-4,
            rtol=1e-4)

    @serial.given(gc=hu.gcs['gc'],
           dc=hu.gcs['dc'],
           N=st.integers(2, 10),
           C=st.integers(3, 10),
           H=st.integers(5, 10),
           W=st.integers(7, 10),
           order=st.sampled_from(['NCHW', 'NHWC']),
           epsilon=st.floats(1e-6, 1e-4),
           store_mean=st.booleans(),
           seed=st.integers(0, 1000),
           store_inv_stdev=st.booleans(),
           inplace=st.booleans())
    def test_instance_norm_reference_check(
            self, gc, dc, N, C, H, W, order, store_mean, store_inv_stdev,
            epsilon, seed, inplace):
        np.random.seed(seed)

        # force store_inv_stdev if store_mean to match existing forward pass
        # implementation
        store_inv_stdev |= store_mean
        if order != "NCHW":
            assume(not inplace)

        inputs = self._get_inputs(N, C, H, W, order)
        op = self._get_op(
            device_option=gc,
            store_mean=store_mean,
            store_inv_stdev=store_inv_stdev,
            epsilon=epsilon,
            order=order,
            inplace=inplace)

        def ref(input_blob, scale_blob, bias_blob):
            if order == 'NHWC':
                input_blob = utils.NHWC2NCHW(input_blob)

            mean_blob = input_blob.reshape((N, C, -1)).mean(axis=2)
            inv_stdev_blob = 1.0 / \
                np.sqrt(input_blob.reshape((N, C, -1)).var(axis=2) + epsilon)
            # _bc indicates blobs that are reshaped for broadcast
            scale_bc = scale_blob[np.newaxis, :, np.newaxis, np.newaxis]
            mean_bc = mean_blob[:, :, np.newaxis, np.newaxis]
            inv_stdev_bc = inv_stdev_blob[:, :, np.newaxis, np.newaxis]
            bias_bc = bias_blob[np.newaxis, :, np.newaxis, np.newaxis]
            normalized_blob = scale_bc * (input_blob - mean_bc) * inv_stdev_bc \
                + bias_bc

            if order == 'NHWC':
                normalized_blob = utils.NCHW2NHWC(normalized_blob)

            if not store_mean and not store_inv_stdev:
                return normalized_blob,
            elif not store_inv_stdev:
                return normalized_blob, mean_blob
            else:
                return normalized_blob, mean_blob, inv_stdev_blob

        self.assertReferenceChecks(gc, op, inputs, ref)

    @given(gc=hu.gcs['gc'],
           dc=hu.gcs['dc'],
           N=st.integers(2, 10),
           C=st.integers(3, 10),
           H=st.integers(5, 10),
           W=st.integers(7, 10),
           order=st.sampled_from(['NCHW', 'NHWC']),
           epsilon=st.floats(1e-6, 1e-4),
           store_mean=st.booleans(),
           seed=st.integers(0, 1000),
           store_inv_stdev=st.booleans())
    def test_instance_norm_device_check(
            self, gc, dc, N, C, H, W, order, store_mean, store_inv_stdev,
            epsilon, seed):
        np.random.seed(seed)

        # force store_inv_stdev if store_mean to match existing forward pass
        # implementation
        store_inv_stdev |= store_mean

        inputs = self._get_inputs(N, C, H, W, order)
        op = self._get_op(
            device_option=gc,
            store_mean=store_mean,
            store_inv_stdev=store_inv_stdev,
            epsilon=epsilon,
            order=order)

        self.assertDeviceChecks(dc, op, inputs, [0])

    @given(is_test=st.booleans(),
           N=st.integers(2, 10),
           C=st.integers(3, 10),
           H=st.integers(5, 10),
           W=st.integers(7, 10),
           order=st.sampled_from(['NCHW', 'NHWC']),
           epsilon=st.floats(1e-6, 1e-4),
           seed=st.integers(0, 1000))
    def test_instance_norm_model_helper(
            self, N, C, H, W, order, epsilon, seed, is_test):
        np.random.seed(seed)
        model = model_helper.ModelHelper(name="test_model")
        brew.instance_norm(
            model,
            'input',
            'output',
            C,
            epsilon=epsilon,
            order=order,
            is_test=is_test)

        input_blob = np.random.rand(N, C, H, W).astype(np.float32)
        if order == 'NHWC':
            input_blob = utils.NCHW2NHWC(input_blob)

        self.ws.create_blob('input').feed(input_blob)

        self.ws.create_net(model.param_init_net).run()
        self.ws.create_net(model.net).run()

        if is_test:
            scale = self.ws.blobs['output_s'].fetch()
            assert scale is not None
            assert scale.shape == (C, )
            bias = self.ws.blobs['output_b'].fetch()
            assert bias is not None
            assert bias.shape == (C, )

        output_blob = self.ws.blobs['output'].fetch()
        if order == 'NHWC':
            output_blob = utils.NHWC2NCHW(output_blob)

        assert output_blob.shape == (N, C, H, W)


if __name__ == '__main__':
    unittest.main()