File: key_split_ops_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (45 lines) | stat: -rw-r--r-- 1,289 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45





import hypothesis.strategies as st

from caffe2.python import core, workspace
from hypothesis import given
import caffe2.python.hypothesis_test_util as hu

import numpy as np


class TestKeySplitOps(hu.HypothesisTestCase):
    @given(
        X=hu.arrays(
            dims=[1000],
            dtype=np.int64,
            elements=st.integers(min_value=0, max_value=100)
        ),
        **hu.gcs_cpu_only
    )
    def test_key_split_op(self, X, gc, dc):
        categorical_limit = max(X) + 1
        workspace.ResetWorkspace()
        workspace.FeedBlob('X', X)
        output_blobs = ['Y_%d' % i for i in range(categorical_limit)]
        op = core.CreateOperator(
            'KeySplit', ['X'],
            output_blobs,
            categorical_limit=categorical_limit
        )
        workspace.RunOperatorOnce(op)
        output_vecs = [
            workspace.blobs[output_blobs[i]] for i in range(categorical_limit)
        ]
        expected_output_vecs = [[] for _ in range(categorical_limit)]
        for i, x in enumerate(X):
            expected_output_vecs[x].append(i)
        for i in range(categorical_limit):
            np.testing.assert_array_equal(
                output_vecs[i],
                np.array(expected_output_vecs[i], dtype=np.int32)
            )