File: layer_norm_op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (411 lines) | stat: -rw-r--r-- 14,983 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411





from caffe2.python import brew, core, workspace
from caffe2.python.model_helper import ModelHelper
from functools import partial
from hypothesis import given, settings
from typing import Optional, Tuple

import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
import hypothesis.strategies as st

import numpy as np
import torch

import unittest


def _layer_norm_ref(axis, epsilon, X):
    left = int(np.prod(X.shape[:axis]))
    reshaped = np.reshape(X, [left, -1])
    mean = np.mean(reshaped, axis=1).reshape([left, 1])
    std = np.sqrt(np.mean(np.square(reshaped), axis=1).reshape(
        [left, 1]) - np.square(mean) + epsilon)
    Y = (reshaped - mean) / (std)
    Y = np.reshape(Y, X.shape)
    mean = np.reshape(mean, X.shape[:axis] + (1,))
    std = np.reshape(std, X.shape[:axis] + (1,))
    return (Y, mean, std)


def _layer_norm_with_affine_ref(axis, epsilon, X, gamma, beta):
    Y, mean, std = _layer_norm_ref(axis, epsilon, X)
    Y = Y * gamma + beta
    return (Y, mean, std)


def _layer_norm_grad_ref(axis, gout_full, norm, mean_full, stdev_full, X_full):
    left = int(np.prod(X_full.shape[:axis]))
    right = int(np.prod(X_full.shape[axis:]))
    X = np.reshape(X_full, [left, right])
    stdev = np.reshape(stdev_full, [left, 1])
    mean = np.reshape(mean_full, [left, 1])
    gout = np.reshape(gout_full, [left, right])
    dstdev_end = (-1.0) / np.power(stdev, 2.0) \
        * np.sum((X - mean) * gout, axis=1).reshape([left, 1])
    dmean_end = np.sum(-1.0 / stdev * gout, axis=1).reshape([left, 1])
    dx_end = 1.0 / stdev * gout

    # stdev block
    dmean_stdev = -1.0 * mean / stdev * dstdev_end
    dx_stdev = X / (right * stdev) * dstdev_end

    # mean block
    dmean = dmean_end + dmean_stdev
    dxmean = (1.0 / right) * dmean

    # final outputs
    dx = dx_end + dx_stdev + dxmean
    dx = dx.reshape(X_full.shape)

    return [dx]


class TestLayerNormOp(serial.SerializedTestCase):
    @given(X=hu.tensor(min_dim=2), **hu.gcs)
    @settings(deadline=10000)
    def test_layer_norm_grad_op(self, X, gc, dc):
        axis = np.random.randint(0, len(X.shape))
        epsilon = 1e-4
        op = core.CreateOperator(
            "LayerNormGradient",
            ["gout", "out", "mean", "stdev", "in"],
            ["gin"],
            axis=axis,
            epsilon=epsilon,
        )

        norm, mean, stdev = _layer_norm_ref(axis, epsilon, X)
        gout = norm

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[gout, norm, mean, stdev, X],
            reference=partial(_layer_norm_grad_ref, axis)
        )
        self.assertDeviceChecks(
            device_options=dc,
            op=op,
            inputs=[gout, norm, mean, stdev, X],
            outputs_to_check=[0],
        )

    @given(X=hu.tensor(min_dim=2),
           eps=st.floats(1e-5, 1e-3),
           elementwise_affine=st.booleans(),
           **hu.gcs)
    def test_layer_norm_op(self, X, eps, elementwise_affine, gc, dc):
        axis = np.random.randint(0, len(X.shape))

        op = core.CreateOperator(
            "LayerNorm",
            ["X", "gamma", "beta"] if elementwise_affine else ["X"],
            ["Y", "mean", "std"],
            axis=axis,
            epsilon=eps,
            elementwise_affine=elementwise_affine,
        )

        if elementwise_affine:
            ref = partial(_layer_norm_with_affine_ref, axis, eps)
        else:
            ref = partial(_layer_norm_ref, axis, eps)

        if elementwise_affine:
            gamma = np.random.randn(*X.shape[axis:]).astype(np.float32)
            beta = np.random.randn(*X.shape[axis:]).astype(np.float32)
            inputs = [X, gamma, beta]
        else:
            inputs = [X]

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=inputs,
            reference=ref,
        )
        self.assertDeviceChecks(
            device_options=dc,
            op=op,
            inputs=inputs,
            outputs_to_check=[0, 1, 2],
        )

    @given(M=st.integers(1, 10),
           N=st.integers(10, 20),
           axis=st.integers(0, 1),
           eps=st.floats(1e-5, 1e-3),
           elementwise_affine=st.booleans(),
           **hu.gcs)
    @settings(deadline=10000)
    def test_layer_norm_grad(
            self, M, N, axis, eps, elementwise_affine, gc, dc):
        op = core.CreateOperator(
            "LayerNorm",
            ["X", "gamma", "beta"] if elementwise_affine else ["X"],
            ["Y", "mean", "std"],
            axis=axis,
            epsilon=eps,
            elementwise_affine=elementwise_affine,
        )

        X = np.arange(M * N).astype(np.float32)
        np.random.shuffle(X)
        X = X.reshape((M, N))
        if elementwise_affine:
            gamma = np.random.randn(*X.shape[axis:]).astype(np.float32)
            beta = np.random.randn(*X.shape[axis:]).astype(np.float32)
            inputs = [X, gamma, beta]
        else:
            inputs = [X]

        for i in range(len(inputs)):
            self.assertGradientChecks(gc, op, inputs, i, [0])

    @unittest.skipIf(workspace.has_hip_support,
                     "Operator cross-calling doesn't work with hip yet")
    @given(X=hu.tensor(min_dim=2),
           eps=st.floats(1e-5, 1e-3),
           elementwise_affine=st.booleans(),
           **hu.gcs)
    @settings(deadline=10000)
    def test_layer_norm_op_c10(self, X, eps, elementwise_affine, gc, dc):
        axis = np.random.randint(0, len(X.shape))

        op = core.CreateOperator(
            "C10LayerNorm_DontUseThisOpYet",
            ["X", "gamma", "beta"] if elementwise_affine else ["X"],
            ["Y", "mean", "std"],
            axis=axis,
            epsilon=eps,
            elementwise_affine=elementwise_affine,
        )

        if elementwise_affine:
            ref = partial(_layer_norm_with_affine_ref, axis, eps)
        else:
            ref = partial(_layer_norm_ref, axis, eps)

        if elementwise_affine:
            gamma = np.random.randn(*X.shape[axis:]).astype(np.float32)
            beta = np.random.randn(*X.shape[axis:]).astype(np.float32)
            inputs = [X, gamma, beta]
        else:
            inputs = [X]

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=inputs,
            reference=ref,
        )
        self.assertDeviceChecks(
            device_options=dc,
            op=op,
            inputs=inputs,
            outputs_to_check=[0, 1, 2],
        )

    @unittest.skipIf(workspace.has_hip_support,
                     "Operator cross-calling doesn't work with hip yet")
    @given(X=hu.tensor(min_dim=2),
           eps=st.floats(1e-5, 1e-3),
           elementwise_affine=st.booleans(),
           **hu.gcs)
    def test_layer_norm_op_c10_preallocated_outputs(
            self, X, eps, elementwise_affine, gc, dc):
        # This test case ensures that it works correctly when output tensors are
        # preallocated.
        axis = np.random.randint(0, len(X.shape))

        self.ws.create_blob("X").feed(X)
        if elementwise_affine:
            gamma = np.random.randn(*X.shape[axis:]).astype(np.float32)
            beta = np.random.randn(*X.shape[axis:]).astype(np.float32)
            self.ws.create_blob("gamma").feed(gamma)
            self.ws.create_blob("beta").feed(beta)

        m = ModelHelper(name="test")
        m.net.C10LayerNorm_DontUseThisOpYet(
            ["X", "gamma", "beta"] if elementwise_affine else ["X"],
            ["Y", "mean", "std"],
            axis=axis,
            epsilon=eps,
            elementwise_affine=elementwise_affine,
        )
        self.ws.create_net(m.param_init_net).run()
        net = self.ws.create_net(m.net)
        # run two times to be extra sure that the outputs are preallocated
        net.run()
        net.run()

        if elementwise_affine:
            expected_norm, expected_mean, expected_std = \
                _layer_norm_with_affine_ref(axis, eps, X, gamma, beta)
        else:
            expected_norm, expected_mean, expected_std = _layer_norm_ref(
                axis, eps, X)
        actual_norm = self.ws.fetch_blob('Y')
        actual_mean = self.ws.fetch_blob('mean')
        actual_std = self.ws.fetch_blob('std')

        torch.testing.assert_allclose(
            expected_norm, actual_norm, rtol=1e-4, atol=1e-4)
        torch.testing.assert_allclose(expected_mean, actual_mean)
        torch.testing.assert_allclose(expected_std, actual_std)

    @given(X=hu.tensor(min_dim=2),
           eps=st.floats(1e-5, 1e-3),
           elementwise_affine=st.booleans(),
           **hu.gcs)
    def test_layer_norm_op_pytorch(self, X, eps, elementwise_affine, gc, dc):
        axis = np.random.randint(0, len(X.shape))

        if elementwise_affine:
            gamma = np.random.randn(*X.shape[axis:]).astype(np.float32)
            beta = np.random.randn(*X.shape[axis:]).astype(np.float32)
            expected_norm, expected_mean, expected_std = \
                _layer_norm_with_affine_ref(axis, eps, X, gamma, beta)
            actual_norm, actual_mean, actual_std = torch.ops._caffe2.LayerNorm(
                torch.tensor(X), torch.tensor(gamma), torch.tensor(beta),
                axis, eps, True)
        else:
            expected_norm, expected_mean, expected_std = _layer_norm_ref(
                axis, eps, X)
            actual_norm, actual_mean, actual_std = torch.ops._caffe2.LayerNorm(
                torch.tensor(X), None, None, axis, eps)

        torch.testing.assert_allclose(
            expected_norm, actual_norm, rtol=1e-4, atol=1e-4)
        torch.testing.assert_allclose(expected_mean, actual_mean)
        torch.testing.assert_allclose(expected_std, actual_std)

    # Test case is using workspace.has_cuda_support and not
    # workspace.has_gpu_support to exclude it from HIP because tensor interop
    # doesn't work for HIP tensors yet
    @unittest.skipIf(not workspace.has_cuda_support, "No cuda support")
    @given(X=hu.tensor(min_dim=2),
           eps=st.floats(1e-5, 1e-3),
           elementwise_affine=st.booleans())
    def test_layer_norm_op_pytorch_cuda(self, X, eps, elementwise_affine):
        axis = np.random.randint(0, len(X.shape))

        if elementwise_affine:
            gamma = np.random.randn(*X.shape[axis:]).astype(np.float32)
            beta = np.random.randn(*X.shape[axis:]).astype(np.float32)
            expected_norm, expected_mean, expected_std = \
                _layer_norm_with_affine_ref(axis, eps, X, gamma, beta)
            actual_norm, actual_mean, actual_std = torch.ops._caffe2.LayerNorm(
                torch.tensor(X).cuda(),
                torch.tensor(gamma).cuda(),
                torch.tensor(beta).cuda(),
                axis,
                eps,
                True)
        else:
            expected_norm, expected_mean, expected_std = _layer_norm_ref(
                axis, eps, X)
            actual_norm, actual_mean, actual_std = torch.ops._caffe2.LayerNorm(
                torch.tensor(X).cuda(), None, None, axis, eps)

        torch.testing.assert_allclose(
            expected_norm, actual_norm.cpu(), rtol=1e-4, atol=1e-4)
        torch.testing.assert_allclose(expected_mean, actual_mean.cpu())
        torch.testing.assert_allclose(expected_std, actual_std.cpu())

    @given(X=hu.tensor(min_dim=2),
           eps=st.floats(1e-5, 1e-3),
           elementwise_affine=st.booleans(),
           **hu.gcs)
    @settings(deadline=10000)
    def test_layer_norm_op_jit(self, X, eps, elementwise_affine, gc, dc):
        @torch.jit.script
        def jit_layer_norm(
                X: torch.Tensor,
                gamma: Optional[torch.Tensor] = None,
                beta: Optional[torch.Tensor] = None,
                axis: int = 1,
                eps: float = 1e-5,
                elementwise_affine: bool = False,
        ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
            return torch.ops._caffe2.LayerNorm(
                X, gamma, beta, axis, eps, elementwise_affine)

        axis = np.random.randint(0, len(X.shape))

        if elementwise_affine:
            gamma = np.random.randn(*X.shape[axis:]).astype(np.float32)
            beta = np.random.randn(*X.shape[axis:]).astype(np.float32)
            expected_norm, expected_mean, expected_std = \
                _layer_norm_with_affine_ref(axis, eps, X, gamma, beta)
            actual_norm, actual_mean, actual_std = jit_layer_norm(
                torch.tensor(X), torch.tensor(gamma), torch.tensor(beta),
                axis, eps, elementwise_affine)
        else:
            expected_norm, expected_mean, expected_std = _layer_norm_ref(
                axis, eps, X)
            actual_norm, actual_mean, actual_std = jit_layer_norm(
                torch.tensor(X), None, None, axis, eps, elementwise_affine)

        torch.testing.assert_allclose(
            expected_norm, actual_norm, rtol=1e-4, atol=1e-4)
        torch.testing.assert_allclose(expected_mean, actual_mean)
        torch.testing.assert_allclose(expected_std, actual_std)

    @given(X=hu.tensor(min_dim=2), **hu.gcs)
    def test_layer_norm_brew_wrapper(self, X, gc, dc):
        axis = np.random.randint(0, len(X.shape))
        scale_dim = [1] * np.ndim(X)
        scale_dim[axis] = X.shape[axis]

        self.ws.create_blob('input').feed(X)

        model = ModelHelper(name='test_layer_norm_brew_wrapper')
        brew.layer_norm(
            model,
            'input',
            'output',
            dim_in=X.shape[axis:],
            axis=axis,
            epsilon=1e-4,
        )

        self.ws.create_net(model.param_init_net).run()
        self.ws.create_net(model.net).run()

    @given(N=st.integers(1, 10), elementwise_affine=st.booleans(), **hu.gcs)
    @settings(deadline=None)
    def test_layer_norm_with_empty_batch(self, N, elementwise_affine, gc, dc):
        X = np.random.randn(0, N).astype(np.float32)
        gamma = np.random.rand(N).astype(np.float32)
        beta = np.random.rand(N).astype(np.float32)

        op = core.CreateOperator(
            "LayerNorm",
            ["X", "gamma", "beta"] if elementwise_affine else ["X"],
            ["Y", "mean", "sigma"],
            elementwise_affine=elementwise_affine,
        )

        def ref(X, gamma=None, beta=None):
            Y = np.zeros_like(X)
            axis = 1
            mean = np.zeros(X.shape[:axis] + (1,), dtype=X.dtype)
            sigma = np.zeros(X.shape[:axis] + (1,), dtype=X.dtype)
            return Y, mean, sigma


        inputs = [X, gamma, beta] if elementwise_affine else [X]
        self.assertReferenceChecks(gc, op, inputs, ref)
        self.assertDeviceChecks(dc, op, inputs, [0, 1])
        for i in range(len(inputs)):
            self.assertGradientChecks(gc, op, inputs, i, [0])


if __name__ == "__main__":
    unittest.main()