1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
import numpy as np
from hypothesis import given, assume
import hypothesis.strategies as st
from caffe2.python import core, model_helper, utils
import caffe2.python.hypothesis_test_util as hu
class TestLeakyRelu(hu.HypothesisTestCase):
def _get_inputs(self, N, C, H, W, order):
input_data = np.random.rand(N, C, H, W).astype(np.float32) - 0.5
# default step size is 0.05
input_data[np.logical_and(
input_data >= 0, input_data <= 0.051)] = 0.051
input_data[np.logical_and(
input_data <= 0, input_data >= -0.051)] = -0.051
if order == 'NHWC':
input_data = utils.NCHW2NHWC(input_data)
return input_data,
def _get_op(self, device_option, alpha, order, inplace=False):
outputs = ['output' if not inplace else "input"]
op = core.CreateOperator(
'LeakyRelu',
['input'],
outputs,
alpha=alpha,
device_option=device_option)
return op
def _feed_inputs(self, input_blobs, device_option):
names = ['input', 'scale', 'bias']
for name, blob in zip(names, input_blobs):
self.ws.create_blob(name).feed(blob, device_option=device_option)
@given(gc=hu.gcs['gc'],
dc=hu.gcs['dc'],
N=st.integers(2, 3),
C=st.integers(2, 3),
H=st.integers(2, 3),
W=st.integers(2, 3),
alpha=st.floats(0, 1),
order=st.sampled_from(['NCHW', 'NHWC']),
seed=st.integers(0, 1000))
def test_leaky_relu_gradients(self, gc, dc, N, C, H, W, order, alpha, seed):
np.random.seed(seed)
op = self._get_op(
device_option=gc,
alpha=alpha,
order=order)
input_blobs = self._get_inputs(N, C, H, W, order)
self.assertDeviceChecks(dc, op, input_blobs, [0])
self.assertGradientChecks(gc, op, input_blobs, 0, [0])
@given(gc=hu.gcs['gc'],
dc=hu.gcs['dc'],
N=st.integers(2, 10),
C=st.integers(3, 10),
H=st.integers(5, 10),
W=st.integers(7, 10),
alpha=st.floats(0, 1),
seed=st.integers(0, 1000))
def test_leaky_relu_layout(self, gc, dc, N, C, H, W, alpha, seed):
outputs = {}
for order in ('NCHW', 'NHWC'):
np.random.seed(seed)
input_blobs = self._get_inputs(N, C, H, W, order)
self._feed_inputs(input_blobs, device_option=gc)
op = self._get_op(
device_option=gc,
alpha=alpha,
order=order)
self.ws.run(op)
outputs[order] = self.ws.blobs['output'].fetch()
np.testing.assert_allclose(
outputs['NCHW'],
utils.NHWC2NCHW(outputs["NHWC"]),
atol=1e-4,
rtol=1e-4)
@given(gc=hu.gcs['gc'],
dc=hu.gcs['dc'],
N=st.integers(2, 10),
C=st.integers(3, 10),
H=st.integers(5, 10),
W=st.integers(7, 10),
order=st.sampled_from(['NCHW', 'NHWC']),
alpha=st.floats(0, 1),
seed=st.integers(0, 1000),
inplace=st.booleans())
def test_leaky_relu_reference_check(self, gc, dc, N, C, H, W, order, alpha,
seed, inplace):
np.random.seed(seed)
if order != "NCHW":
assume(not inplace)
inputs = self._get_inputs(N, C, H, W, order)
op = self._get_op(
device_option=gc,
alpha=alpha,
order=order,
inplace=inplace)
def ref(input_blob):
result = input_blob.copy()
result[result < 0] *= alpha
return result,
self.assertReferenceChecks(gc, op, inputs, ref)
@given(gc=hu.gcs['gc'],
dc=hu.gcs['dc'],
N=st.integers(2, 10),
C=st.integers(3, 10),
H=st.integers(5, 10),
W=st.integers(7, 10),
order=st.sampled_from(['NCHW', 'NHWC']),
alpha=st.floats(0, 1),
seed=st.integers(0, 1000))
def test_leaky_relu_device_check(self, gc, dc, N, C, H, W, order, alpha,
seed):
np.random.seed(seed)
inputs = self._get_inputs(N, C, H, W, order)
op = self._get_op(
device_option=gc,
alpha=alpha,
order=order)
self.assertDeviceChecks(dc, op, inputs, [0])
@given(N=st.integers(2, 10),
C=st.integers(3, 10),
H=st.integers(5, 10),
W=st.integers(7, 10),
order=st.sampled_from(['NCHW', 'NHWC']),
alpha=st.floats(0, 1),
seed=st.integers(0, 1000))
def test_leaky_relu_model_helper_helper(self, N, C, H, W, order, alpha, seed):
np.random.seed(seed)
arg_scope = {'order': order}
model = model_helper.ModelHelper(name="test_model", arg_scope=arg_scope)
model.LeakyRelu(
'input',
'output',
alpha=alpha)
input_blob = np.random.rand(N, C, H, W).astype(np.float32)
if order == 'NHWC':
input_blob = utils.NCHW2NHWC(input_blob)
self.ws.create_blob('input').feed(input_blob)
self.ws.create_net(model.param_init_net).run()
self.ws.create_net(model.net).run()
output_blob = self.ws.blobs['output'].fetch()
if order == 'NHWC':
output_blob = utils.NHWC2NCHW(output_blob)
assert output_blob.shape == (N, C, H, W)
if __name__ == '__main__':
import unittest
unittest.main()
|