1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
from caffe2.python import core
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
from hypothesis import given, settings
import hypothesis.strategies as st
import copy
from functools import partial
import math
import numpy as np
class TestLearningRate(serial.SerializedTestCase):
@given(**hu.gcs_cpu_only)
@settings(deadline=None, max_examples=50)
def test_alter_learning_rate_op(self, gc, dc):
iter = np.random.randint(low=1, high=1e5, size=1)
active_period = int(np.random.randint(low=1, high=1e3, size=1))
inactive_period = int(np.random.randint(low=1, high=1e3, size=1))
base_lr = float(np.random.random(1))
def ref(iter):
iter = float(iter)
reminder = iter % (active_period + inactive_period)
if reminder < active_period:
return (np.array(base_lr), )
else:
return (np.array(0.), )
op = core.CreateOperator(
'LearningRate',
'iter',
'lr',
policy="alter",
active_first=True,
base_lr=base_lr,
active_period=active_period,
inactive_period=inactive_period
)
self.assertReferenceChecks(gc, op, [iter], ref)
@given(**hu.gcs_cpu_only)
def test_hill_learning_rate_op(self, gc, dc):
iter = np.random.randint(low=1, high=1e5, size=1)
num_iter = int(np.random.randint(low=1e2, high=1e8, size=1))
start_multiplier = 1e-4
gamma = 1.0
power = 0.5
end_multiplier = 1e-2
base_lr = float(np.random.random(1))
def ref(iter):
iter = float(iter)
if iter < num_iter:
lr = start_multiplier + (
1.0 - start_multiplier
) * iter / num_iter
else:
iter -= num_iter
lr = math.pow(1.0 + gamma * iter, -power)
lr = max(lr, end_multiplier)
return (np.array(base_lr * lr), )
op = core.CreateOperator(
'LearningRate',
'data',
'out',
policy="hill",
base_lr=base_lr,
num_iter=num_iter,
start_multiplier=start_multiplier,
gamma=gamma,
power=power,
end_multiplier=end_multiplier,
)
self.assertReferenceChecks(gc, op, [iter], ref)
@given(**hu.gcs_cpu_only)
def test_slope_learning_rate_op(self, gc, dc):
iter = np.random.randint(low=1, high=1e5, size=1)
num_iter_1 = int(np.random.randint(low=1e2, high=1e3, size=1))
multiplier_1 = 1.0
num_iter_2 = num_iter_1 + int(np.random.randint(low=1e2, high=1e3, size=1))
multiplier_2 = 0.5
base_lr = float(np.random.random(1))
def ref(iter):
iter = float(iter)
if iter < num_iter_1:
lr = multiplier_1
else:
lr = max(
multiplier_1 + (iter - num_iter_1) * (multiplier_2 - multiplier_1) / (num_iter_2 - num_iter_1),
multiplier_2
)
return (np.array(base_lr * lr), )
op = core.CreateOperator(
'LearningRate',
'data',
'out',
policy="slope",
base_lr=base_lr,
num_iter_1=num_iter_1,
multiplier_1=multiplier_1,
num_iter_2=num_iter_2,
multiplier_2=multiplier_2,
)
self.assertReferenceChecks(gc, op, [iter], ref)
@given(
**hu.gcs_cpu_only
)
@settings(max_examples=10)
def test_gate_learningrate(self, gc, dc):
iter = np.random.randint(low=1, high=1e5, size=1)
num_iter = int(np.random.randint(low=1e2, high=1e3, size=1))
base_lr = float(np.random.uniform(-1, 1))
multiplier_1 = float(np.random.uniform(-1, 1))
multiplier_2 = float(np.random.uniform(-1, 1))
def ref(iter):
iter = float(iter)
if iter < num_iter:
return (np.array(multiplier_1 * base_lr), )
else:
return (np.array(multiplier_2 * base_lr), )
op = core.CreateOperator(
'LearningRate',
'data',
'out',
policy="gate",
num_iter=num_iter,
multiplier_1=multiplier_1,
multiplier_2=multiplier_2,
base_lr=base_lr,
)
self.assertReferenceChecks(gc, op, [iter], ref)
@given(
gc=hu.gcs['gc'],
min_num_iter=st.integers(min_value=10, max_value=20),
max_num_iter=st.integers(min_value=50, max_value=100),
)
@settings(max_examples=2, deadline=None)
def test_composite_learning_rate_op(self, gc, min_num_iter, max_num_iter):
np.random.seed(65535)
# Generate the iteration numbers for sub policy
# The four sub policies are as follows:
# 1. exp; 2. step; 3. fix; 4. exp
num_lr_policy = 4
iter_nums = np.random.randint(
low=min_num_iter, high=max_num_iter, size=num_lr_policy)
accu_iter_num = copy.deepcopy(iter_nums)
for i in range(1, num_lr_policy):
accu_iter_num[i] += accu_iter_num[i - 1]
total_iter_nums = accu_iter_num[-1]
policy_lr_scale = np.random.uniform(low=0.1, high=2.0, size=num_lr_policy)
# args for StepLRPolicy
step_size = np.random.randint(low=2, high=min_num_iter // 2)
step_gamma = np.random.random()
# args for ExpLRPolicy
exp_gamma = np.random.random()
# common args
base_lr = 0.1
# StepLRPolicy
def step_lr(iter, lr_scale):
return math.pow(step_gamma, iter // step_size) * lr_scale
# ExpLRPolicy
def exp_lr(iter, lr_scale):
return math.pow(exp_gamma, iter) * lr_scale
# FixedLRPolicy
def fixed_lr(iter, lr_scale):
return lr_scale
# test one sub policy case
def one_policy_check_ref(iter, lr_scale):
iter = int(iter)
exp_lr_val = exp_lr(iter, lr_scale=lr_scale)
return (np.array(base_lr * exp_lr_val), )
op = core.CreateOperator(
'LearningRate',
'data',
'out',
policy='composite',
sub_policy_num_iters=iter_nums[:1],
sub_policy_0_lr_scale=policy_lr_scale[0],
sub_policy_0_policy='exp',
sub_policy_0_gamma=exp_gamma,
base_lr=base_lr,
)
for iter_idx in range(1, total_iter_nums + 1):
self.assertReferenceChecks(
gc, op, [np.asarray([iter_idx])],
partial(one_policy_check_ref, lr_scale=policy_lr_scale[0]))
# all the case with all four sub policies
def all_sub_policy_check_ref(iter, lr_scale):
assert iter <= accu_iter_num[3]
if iter <= accu_iter_num[0]:
lr = exp_lr(iter, lr_scale=lr_scale)
elif iter <= accu_iter_num[1]:
lr = step_lr(iter, lr_scale=lr_scale)
elif iter <= accu_iter_num[2]:
lr = fixed_lr(iter, lr_scale=lr_scale)
else:
lr = exp_lr(iter, lr_scale=lr_scale)
return (np.array(base_lr * lr), )
op = core.CreateOperator(
'LearningRate',
'data',
'out',
policy='composite',
sub_policy_num_iters=iter_nums,
sub_policy_0_policy='exp',
sub_policy_0_lr_scale=policy_lr_scale[0],
sub_policy_0_gamma=exp_gamma,
sub_policy_1_policy='step',
sub_policy_1_lr_scale=policy_lr_scale[1],
sub_policy_1_stepsize=step_size,
sub_policy_1_gamma=step_gamma,
sub_policy_2_policy='fixed',
sub_policy_2_lr_scale=policy_lr_scale[2],
sub_policy_3_policy='exp',
sub_policy_3_gamma=exp_gamma,
sub_policy_3_lr_scale=policy_lr_scale[3],
base_lr=base_lr,
)
iter_policy = 0
for iter_idx in range(1, total_iter_nums + 1):
if iter_idx > accu_iter_num[iter_policy]:
iter_policy += 1
self.assertReferenceChecks(
gc, op, [np.asarray([iter_idx])],
partial(all_sub_policy_check_ref,
lr_scale=policy_lr_scale[iter_policy])
)
if __name__ == "__main__":
import unittest
unittest.main()
|