1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
|
import hypothesis.strategies as st
from hypothesis import given, assume, settings
import io
import math
import numpy as np
import os
import struct
import unittest
from pathlib import Path
from typing import Dict, Generator, List, NamedTuple, Optional, Tuple, Type
from caffe2.proto import caffe2_pb2
from caffe2.proto.caffe2_pb2 import BlobSerializationOptions
from caffe2.python import core, test_util, workspace
if workspace.has_gpu_support:
DEVICES = [caffe2_pb2.CPU, workspace.GpuDeviceType]
max_gpuid = workspace.NumGpuDevices() - 1
else:
DEVICES = [caffe2_pb2.CPU]
max_gpuid = 0
class MiniDBEntry(NamedTuple):
key: str
value_size: int
# Utility class for other loading tests, don't add test functions here
# Inherit from this test instead. If you add a test here,
# each derived class will inherit it as well and cause test duplication
class TestLoadSaveBase(test_util.TestCase):
def __init__(self, methodName, db_type='minidb'):
super(TestLoadSaveBase, self).__init__(methodName)
self._db_type = db_type
@settings(deadline=None)
@given(src_device_type=st.sampled_from(DEVICES),
src_gpu_id=st.integers(min_value=0, max_value=max_gpuid),
dst_device_type=st.sampled_from(DEVICES),
dst_gpu_id=st.integers(min_value=0, max_value=max_gpuid))
def load_save(self, src_device_type, src_gpu_id,
dst_device_type, dst_gpu_id):
workspace.ResetWorkspace()
dtypes = [np.float16, np.float32, np.float64, np.bool, np.int8,
np.int16, np.int32, np.int64, np.uint8, np.uint16]
arrays = [np.random.permutation(6).reshape(2, 3).astype(T)
for T in dtypes]
assume(core.IsGPUDeviceType(src_device_type) or src_gpu_id == 0)
assume(core.IsGPUDeviceType(dst_device_type) or dst_gpu_id == 0)
src_device_option = core.DeviceOption(
src_device_type, src_gpu_id)
dst_device_option = core.DeviceOption(
dst_device_type, dst_gpu_id)
for i, arr in enumerate(arrays):
self.assertTrue(workspace.FeedBlob(str(i), arr, src_device_option))
self.assertTrue(workspace.HasBlob(str(i)))
# Saves the blobs to a local db.
tmp_folder = self.make_tempdir()
op = core.CreateOperator(
"Save",
[str(i) for i in range(len(arrays))], [],
absolute_path=1,
db=str(tmp_folder / "db"), db_type=self._db_type)
self.assertTrue(workspace.RunOperatorOnce(op))
# Reset the workspace so that anything we load is surely loaded
# from the serialized proto.
workspace.ResetWorkspace()
self.assertEqual(len(workspace.Blobs()), 0)
def _LoadTest(keep_device, device_type, gpu_id, blobs, loadAll):
"""A helper subfunction to test keep and not keep."""
op = core.CreateOperator(
"Load",
[], blobs,
absolute_path=1,
db=str(tmp_folder / "db"), db_type=self._db_type,
device_option=dst_device_option,
keep_device=keep_device,
load_all=loadAll)
self.assertTrue(workspace.RunOperatorOnce(op))
for i, arr in enumerate(arrays):
self.assertTrue(workspace.HasBlob(str(i)))
fetched = workspace.FetchBlob(str(i))
self.assertEqual(fetched.dtype, arr.dtype)
np.testing.assert_array_equal(
workspace.FetchBlob(str(i)), arr)
proto = caffe2_pb2.BlobProto()
proto.ParseFromString(workspace.SerializeBlob(str(i)))
self.assertTrue(proto.HasField('tensor'))
self.assertEqual(proto.tensor.device_detail.device_type,
device_type)
if core.IsGPUDeviceType(device_type):
self.assertEqual(proto.tensor.device_detail.device_id,
gpu_id)
blobs = [str(i) for i in range(len(arrays))]
# Load using device option stored in the proto, i.e.
# src_device_option
_LoadTest(1, src_device_type, src_gpu_id, blobs, 0)
# Load again, but this time load into dst_device_option.
_LoadTest(0, dst_device_type, dst_gpu_id, blobs, 0)
# Load back to the src_device_option to see if both paths are able
# to reallocate memory.
_LoadTest(1, src_device_type, src_gpu_id, blobs, 0)
# Reset the workspace, and load directly into the dst_device_option.
workspace.ResetWorkspace()
_LoadTest(0, dst_device_type, dst_gpu_id, blobs, 0)
# Test load all which loads all blobs in the db into the workspace.
workspace.ResetWorkspace()
_LoadTest(1, src_device_type, src_gpu_id, [], 1)
# Load again making sure that overwrite functionality works.
_LoadTest(1, src_device_type, src_gpu_id, [], 1)
# Load again with different device.
_LoadTest(0, dst_device_type, dst_gpu_id, [], 1)
workspace.ResetWorkspace()
_LoadTest(0, dst_device_type, dst_gpu_id, [], 1)
workspace.ResetWorkspace()
_LoadTest(1, src_device_type, src_gpu_id, blobs, 1)
workspace.ResetWorkspace()
_LoadTest(0, dst_device_type, dst_gpu_id, blobs, 1)
def saveFile(
self, tmp_folder: Path, db_name: str, db_type: str, start_blob_id: int
) -> Tuple[str, List[np.ndarray]]:
dtypes = [np.float16, np.float32, np.float64, np.bool, np.int8,
np.int16, np.int32, np.int64, np.uint8, np.uint16]
arrays = [np.random.permutation(6).reshape(2, 3).astype(T)
for T in dtypes]
for i, arr in enumerate(arrays):
self.assertTrue(workspace.FeedBlob(str(i + start_blob_id), arr))
self.assertTrue(workspace.HasBlob(str(i + start_blob_id)))
# Saves the blobs to a local db.
tmp_file = str(tmp_folder / db_name)
op = core.CreateOperator(
"Save",
[str(i + start_blob_id) for i in range(len(arrays))], [],
absolute_path=1,
db=tmp_file, db_type=db_type)
workspace.RunOperatorOnce(op)
return tmp_file, arrays
class TestLoadSave(TestLoadSaveBase):
def testLoadSave(self):
self.load_save()
def testRepeatedArgs(self):
dtypes = [np.float16, np.float32, np.float64, np.bool, np.int8,
np.int16, np.int32, np.int64, np.uint8, np.uint16]
arrays = [np.random.permutation(6).reshape(2, 3).astype(T)
for T in dtypes]
for i, arr in enumerate(arrays):
self.assertTrue(workspace.FeedBlob(str(i), arr))
self.assertTrue(workspace.HasBlob(str(i)))
# Saves the blobs to a local db.
tmp_folder = self.make_tempdir()
op = core.CreateOperator(
"Save",
[str(i) for i in range(len(arrays))] * 2, [],
absolute_path=1,
db=str(tmp_folder / "db"), db_type=self._db_type)
with self.assertRaises(RuntimeError):
workspace.RunOperatorOnce(op)
def testLoadExcessblobs(self):
tmp_folder = self.make_tempdir()
tmp_file, arrays = self.saveFile(tmp_folder, "db", self._db_type, 0)
op = core.CreateOperator(
"Load",
[], [str(i) for i in range(len(arrays))] * 2,
absolute_path=1,
db=tmp_file, db_type=self._db_type,
load_all=False)
with self.assertRaises(RuntimeError):
workspace.RunOperatorOnce(op)
op = core.CreateOperator(
"Load",
[], [str(len(arrays) + i) for i in [-1, 0]],
absolute_path=1,
db=tmp_file, db_type=self._db_type,
load_all=True)
with self.assertRaises(RuntimeError):
workspace.ResetWorkspace()
workspace.RunOperatorOnce(op)
op = core.CreateOperator(
"Load",
[], [str(len(arrays) + i) for i in range(2)],
absolute_path=1,
db=tmp_file, db_type=self._db_type,
load_all=True)
with self.assertRaises(RuntimeError):
workspace.ResetWorkspace()
workspace.RunOperatorOnce(op)
def testTruncatedFile(self):
tmp_folder = self.make_tempdir()
tmp_file, arrays = self.saveFile(tmp_folder, "db", self._db_type, 0)
with open(tmp_file, 'wb+') as fdest:
fdest.seek(20, os.SEEK_END)
fdest.truncate()
op = core.CreateOperator(
"Load",
[], [str(i) for i in range(len(arrays))],
absolute_path=1,
db=tmp_file, db_type=self._db_type,
load_all=False)
with self.assertRaises(RuntimeError):
workspace.RunOperatorOnce(op)
op = core.CreateOperator(
"Load",
[], [],
absolute_path=1,
db=tmp_file, db_type=self._db_type,
load_all=True)
with self.assertRaises(RuntimeError):
workspace.RunOperatorOnce(op)
def testBlobNameOverrides(self):
original_names = ['blob_a', 'blob_b', 'blob_c']
new_names = ['x', 'y', 'z']
blobs = [np.random.permutation(6) for i in range(3)]
for i, blob in enumerate(blobs):
self.assertTrue(workspace.FeedBlob(original_names[i], blob))
self.assertTrue(workspace.HasBlob(original_names[i]))
self.assertEqual(len(workspace.Blobs()), 3)
# Saves the blobs to a local db.
tmp_folder = self.make_tempdir()
with self.assertRaises(RuntimeError):
workspace.RunOperatorOnce(
core.CreateOperator(
"Save", original_names, [],
absolute_path=1,
strip_prefix='.temp',
blob_name_overrides=new_names,
db=str(tmp_folder / "db"),
db_type=self._db_type
)
)
self.assertTrue(
workspace.RunOperatorOnce(
core.CreateOperator(
"Save", original_names, [],
absolute_path=1,
blob_name_overrides=new_names,
db=str(tmp_folder / "db"),
db_type=self._db_type
)
)
)
self.assertTrue(workspace.ResetWorkspace())
self.assertEqual(len(workspace.Blobs()), 0)
self.assertTrue(
workspace.RunOperatorOnce(
core.CreateOperator(
"Load", [], [],
absolute_path=1,
db=str(tmp_folder / "db"),
db_type=self._db_type,
load_all=1
)
)
)
self.assertEqual(len(workspace.Blobs()), 3)
for i, name in enumerate(new_names):
self.assertTrue(workspace.HasBlob(name))
self.assertTrue((workspace.FetchBlob(name) == blobs[i]).all())
# moved here per @cxj's suggestion
load_new_names = ['blob_x', 'blob_y', 'blob_z']
# load 'x' into 'blob_x'
self.assertTrue(
workspace.RunOperatorOnce(
core.CreateOperator(
"Load", [], load_new_names[0:1],
absolute_path=1,
db=str(tmp_folder / "db"),
db_type=self._db_type,
source_blob_names=new_names[0:1]
)
)
)
# we should have 'blob_a/b/c/' and 'blob_x' now
self.assertEqual(len(workspace.Blobs()), 4)
for i, name in enumerate(load_new_names[0:1]):
self.assertTrue(workspace.HasBlob(name))
self.assertTrue((workspace.FetchBlob(name) == blobs[i]).all())
self.assertTrue(
workspace.RunOperatorOnce(
core.CreateOperator(
"Load", [], load_new_names[0:3],
absolute_path=1,
db=str(tmp_folder / "db"),
db_type=self._db_type,
source_blob_names=new_names[0:3]
)
)
)
# we should have 'blob_a/b/c/' and 'blob_x/y/z' now
self.assertEqual(len(workspace.Blobs()), 6)
for i, name in enumerate(load_new_names[0:3]):
self.assertTrue(workspace.HasBlob(name))
self.assertTrue((workspace.FetchBlob(name) == blobs[i]).all())
def testMissingFile(self):
tmp_folder = self.make_tempdir()
tmp_file = tmp_folder / "missing_db"
op = core.CreateOperator(
"Load",
[], [],
absolute_path=1,
db=str(tmp_file), db_type=self._db_type,
load_all=True)
with self.assertRaises(RuntimeError):
try:
workspace.RunOperatorOnce(op)
except RuntimeError as e:
print(e)
raise
def testLoadMultipleFilesGivenSourceBlobNames(self):
tmp_folder = self.make_tempdir()
db_file_1, arrays_1 = self.saveFile(tmp_folder, "db1", self._db_type, 0)
db_file_2, arrays_2 = self.saveFile(
tmp_folder, "db2", self._db_type, len(arrays_1)
)
db_files = [db_file_1, db_file_2]
blobs_names = [str(i) for i in range(len(arrays_1) + len(arrays_2))]
workspace.ResetWorkspace()
self.assertEqual(len(workspace.Blobs()), 0)
self.assertTrue(
workspace.RunOperatorOnce(
core.CreateOperator(
"Load",
[], blobs_names,
absolute_path=1,
dbs=db_files, db_type=self._db_type,
source_blob_names=blobs_names
)
)
)
self.assertEqual(len(workspace.Blobs()), len(blobs_names))
for i in range(len(arrays_1)):
np.testing.assert_array_equal(
workspace.FetchBlob(str(i)), arrays_1[i]
)
for i in range(len(arrays_2)):
np.testing.assert_array_equal(
workspace.FetchBlob(str(i + len(arrays_1))), arrays_2[i]
)
def testLoadAllMultipleFiles(self):
tmp_folder = self.make_tempdir()
db_file_1, arrays_1 = self.saveFile(tmp_folder, "db1", self._db_type, 0)
db_file_2, arrays_2 = self.saveFile(
tmp_folder, "db2", self._db_type, len(arrays_1)
)
db_files = [db_file_1, db_file_2]
workspace.ResetWorkspace()
self.assertEqual(len(workspace.Blobs()), 0)
self.assertTrue(
workspace.RunOperatorOnce(
core.CreateOperator(
"Load",
[], [],
absolute_path=1,
dbs=db_files, db_type=self._db_type,
load_all=True
)
)
)
self.assertEqual(len(workspace.Blobs()), len(arrays_1) + len(arrays_2))
for i in range(len(arrays_1)):
np.testing.assert_array_equal(
workspace.FetchBlob(str(i)), arrays_1[i]
)
for i in range(len(arrays_2)):
np.testing.assert_array_equal(
workspace.FetchBlob(str(i + len(arrays_1))), arrays_2[i]
)
def testLoadAllMultipleFilesWithSameKey(self):
tmp_folder = self.make_tempdir()
db_file_1, arrays_1 = self.saveFile(tmp_folder, "db1", self._db_type, 0)
db_file_2, arrays_2 = self.saveFile(tmp_folder, "db2", self._db_type, 0)
db_files = [db_file_1, db_file_2]
workspace.ResetWorkspace()
self.assertEqual(len(workspace.Blobs()), 0)
op = core.CreateOperator(
"Load",
[], [],
absolute_path=1,
dbs=db_files, db_type=self._db_type,
load_all=True)
with self.assertRaises(RuntimeError):
workspace.RunOperatorOnce(op)
def testLoadRepeatedFiles(self):
tmp_folder = self.make_tempdir()
tmp_file, arrays = self.saveFile(tmp_folder, "db", self._db_type, 0)
db_files = [tmp_file, tmp_file]
workspace.ResetWorkspace()
self.assertEqual(len(workspace.Blobs()), 0)
op = core.CreateOperator(
"Load",
[], [str(i) for i in range(len(arrays))],
absolute_path=1,
dbs=db_files, db_type=self._db_type,
load_all=False)
with self.assertRaises(RuntimeError):
workspace.RunOperatorOnce(op)
def testLoadWithDBOptions(self) -> None:
tmp_folder = self.make_tempdir()
tmp_file, arrays = self.saveFile(tmp_folder, "db", self._db_type, 0)
db_files = [tmp_file, tmp_file]
workspace.ResetWorkspace()
self.assertEqual(len(workspace.Blobs()), 0)
db_options = b"test_db_options"
op = core.CreateOperator(
"Load",
[], [str(i) for i in range(len(arrays))],
absolute_path=1,
dbs=db_files, db_type=self._db_type,
load_all=False,
db_options=db_options,
)
with self.assertRaises(RuntimeError):
workspace.RunOperatorOnce(op)
def create_test_blobs(
self, size: int = 1234, feed: bool = True
) -> List[Tuple[str, np.ndarray]]:
def int_array(dtype: Type[np.integer], size: int) -> np.ndarray:
info = np.iinfo(dtype)
return np.random.randint(info.min, info.max, size, dtype=dtype)
def float_array(dtype: Type[np.floating], size: int) -> np.ndarray:
return np.random.random_sample(size).astype(dtype)
blobs = [
("int8_data", int_array(np.int8, size)),
("int16_data", int_array(np.int16, size)),
("int32_data", int_array(np.int32, size)),
("int64_data", int_array(np.int64, size)),
("uint8_data", int_array(np.uint8, size)),
("uint16_data", int_array(np.uint16, size)),
("float16_data", float_array(np.float16, size)),
("float32_data", float_array(np.float32, size)),
("float64_data", float_array(np.float64, size)),
]
if feed:
for name, data in blobs:
workspace.FeedBlob(name, data)
return blobs
def load_blobs(
self,
blob_names: List[str],
dbs: List[str],
db_type: Optional[str] = None
) -> None:
workspace.ResetWorkspace()
self.assertEqual(len(workspace.Blobs()), 0)
load_op = core.CreateOperator(
"Load",
[],
blob_names,
absolute_path=1,
dbs=dbs,
db_type=db_type or self._db_type,
)
self.assertTrue(workspace.RunOperatorOnce(load_op))
self.assertEqual(len(workspace.Blobs()), len(blob_names))
def load_and_check_blobs(
self,
blobs: List[Tuple[str, np.ndarray]],
dbs: List[str],
db_type: Optional[str] = None
) -> None:
self.load_blobs([name for name, data in blobs], dbs, db_type)
for name, data in blobs:
np.testing.assert_array_equal(workspace.FetchBlob(name), data)
def _read_minidb_entries(
self, path: Path
) -> Generator[MiniDBEntry, None, None]:
"""Read the entry information out of a minidb file.
"""
header = struct.Struct("=ii")
with path.open("rb") as f:
while True:
buf = f.read(header.size)
if not buf:
break
if len(buf) < header.size:
raise Exception("early EOF in minidb header")
(key_len, value_len) = header.unpack(buf)
if key_len < 0 or value_len < 0:
raise Exception(
f"invalid minidb header: ({key_len}, {value_len})"
)
key = f.read(key_len)
if len(key) < key_len:
raise Exception("early EOF in minidb key")
f.seek(value_len, io.SEEK_CUR)
yield MiniDBEntry(key=key.decode("utf-8"), value_size=value_len)
def _read_chunk_info(self, path: Path) -> Dict[str, List[MiniDBEntry]]:
"""Read a minidb file and return the names of each blob and how many
chunks are stored for that blob.
"""
chunk_id_separator = "#%"
results: Dict[str, List[MiniDBEntry]] = {}
for entry in self._read_minidb_entries(path):
parts = entry.key.rsplit(chunk_id_separator, 1)
if len(parts) == 0:
assert entry.key not in results
results[entry.key] = [entry]
else:
blob_name = parts[0]
results.setdefault(blob_name, [])
results[blob_name].append(entry)
return results
def _test_save_with_chunk_size(
self, num_elems: int, chunk_size: int, expected_num_chunks: int,
) -> None:
tmp_folder = self.make_tempdir()
tmp_file = str(tmp_folder / "save.output")
blobs = self.create_test_blobs(num_elems)
# Saves the blobs to a local db.
save_op = core.CreateOperator(
"Save",
[name for name, data in blobs],
[],
absolute_path=1,
db=tmp_file,
db_type=self._db_type,
chunk_size=chunk_size,
)
self.assertTrue(workspace.RunOperatorOnce(save_op))
self.load_and_check_blobs(blobs, [tmp_file])
blob_chunks = self._read_chunk_info(Path(tmp_file))
for blob_name, chunks in blob_chunks.items():
self.assertEqual(len(chunks), expected_num_chunks)
def testSaveWithChunkSize(self) -> None:
num_elems = 1234
chunk_size = 32
expected_num_chunks = math.ceil(num_elems / chunk_size)
self._test_save_with_chunk_size(
num_elems=num_elems,
chunk_size=chunk_size,
expected_num_chunks=expected_num_chunks,
)
def testSaveWithDefaultChunkSize(self) -> None:
# This is the default value of the --caffe2_tensor_chunk_size flag from
# core/blob_serialization.cc
#
# Test with just slightly more than this to ensure that 2 chunks are
# used.
default_chunk_size = 1000000
self._test_save_with_chunk_size(
num_elems=default_chunk_size + 10,
chunk_size=-1,
expected_num_chunks=2,
)
def testSaveWithNoChunking(self) -> None:
default_chunk_size = 1000000
self._test_save_with_chunk_size(
num_elems=default_chunk_size + 10,
chunk_size=0,
expected_num_chunks=1,
)
def testSaveWithOptions(self) -> None:
tmp_folder = self.make_tempdir()
tmp_file = str(tmp_folder / "save.output")
num_elems = 1234
blobs = self.create_test_blobs(num_elems)
# Saves the blobs to a local db.
save_op = core.CreateOperator(
"Save",
[name for name, data in blobs],
[],
absolute_path=1,
db=tmp_file,
db_type=self._db_type,
chunk_size=40,
options=caffe2_pb2.SerializationOptions(
options=[
BlobSerializationOptions(
blob_name_regex="int16_data", chunk_size=10
),
BlobSerializationOptions(
blob_name_regex=".*16_data", chunk_size=20
),
BlobSerializationOptions(
blob_name_regex="float16_data", chunk_size=30
),
],
),
)
self.assertTrue(workspace.RunOperatorOnce(save_op))
self.load_and_check_blobs(blobs, [tmp_file])
blob_chunks = self._read_chunk_info(Path(tmp_file))
# We explicitly set a chunk_size of 10 for int16_data
self.assertEqual(
len(blob_chunks["int16_data"]), math.ceil(num_elems / 10)
)
# uint16_data should match the .*16_data pattern, and get a size of 20
self.assertEqual(
len(blob_chunks["uint16_data"]), math.ceil(num_elems / 20)
)
# float16_data should also match the .*16_data pattern, and get a size
# of 20. The explicitly float16_data rule came after the .*16_data
# pattern, so it has lower precedence and will be ignored.
self.assertEqual(
len(blob_chunks["float16_data"]), math.ceil(num_elems / 20)
)
# int64_data will get the default chunk_size of 40
self.assertEqual(
len(blob_chunks["int64_data"]), math.ceil(num_elems / 40)
)
def testSaveWithDBOptions(self) -> None:
num_elems = 1234
chunk_size = 32
expected_num_chunks = math.ceil(num_elems / chunk_size)
tmp_folder = self.make_tempdir()
tmp_file = str(tmp_folder / "save.output")
blobs = self.create_test_blobs(num_elems)
db_options = b"test_db_options"
# Saves the blobs to a local db.
save_op = core.CreateOperator(
"Save",
[name for name, data in blobs],
[],
absolute_path=1,
db=tmp_file,
db_type=self._db_type,
chunk_size=chunk_size,
db_options=db_options,
)
self.assertTrue(workspace.RunOperatorOnce(save_op))
self.load_and_check_blobs(blobs, [tmp_file])
blob_chunks = self._read_chunk_info(Path(tmp_file))
for blob_name, chunks in blob_chunks.items():
self.assertEqual(len(chunks), expected_num_chunks)
def testSaveFloatToBfloat16(self) -> None:
tmp_folder = self.make_tempdir()
tmp_file = str(tmp_folder / "save.output")
# Create 2 blobs with the same float data
float_data = np.random.random_sample(4000).astype(np.float32)
workspace.FeedBlob("float1", float_data)
workspace.FeedBlob("float2", float_data)
blob_names = ["float1", "float2"]
# Serialize the data, using bfloat16 serialization for one of the blobs
save_op = core.CreateOperator(
"Save",
blob_names,
[],
absolute_path=1,
db=tmp_file,
db_type=self._db_type,
options=caffe2_pb2.SerializationOptions(
options=[
BlobSerializationOptions(
blob_name_regex="float1",
float_format=BlobSerializationOptions.FLOAT_BFLOAT16,
),
],
),
)
self.assertTrue(workspace.RunOperatorOnce(save_op))
# As long as fbgemm was available for us to perform bfloat16 conversion,
# the serialized data for float1 should be almost half the size of float2
if workspace.has_fbgemm:
blob_chunks = self._read_chunk_info(Path(tmp_file))
self.assertEqual(len(blob_chunks["float1"]), 1, blob_chunks["float1"])
self.assertEqual(len(blob_chunks["float2"]), 1, blob_chunks["float2"])
self.assertLess(
blob_chunks["float1"][0].value_size,
0.6 * blob_chunks["float2"][0].value_size
)
self.load_blobs(blob_names, [tmp_file])
# float2 should be exactly the same as the input data
np.testing.assert_array_equal(workspace.FetchBlob("float2"), float_data)
# float2 should be close-ish to the input data
np.testing.assert_array_almost_equal(
workspace.FetchBlob("float1"), float_data, decimal=2
)
def testEstimateBlobSizes(self) -> None:
# Create some blobs to test with
float_data = np.random.random_sample(4000).astype(np.float32)
workspace.FeedBlob("float1", float_data)
workspace.FeedBlob("float2", float_data)
workspace.FeedBlob(
"float3", np.random.random_sample(2).astype(np.float32)
)
workspace.FeedBlob(
"ui16", np.random.randint(0, 0xffff, size=1024, dtype=np.uint16)
)
# Estimate the serialized size of the data.
# Request bfloat16 serialization for one of the float blobs, just to
# exercise size estimation when using this option.
options = caffe2_pb2.SerializationOptions(
options=[
BlobSerializationOptions(
blob_name_regex="float1",
float_format=BlobSerializationOptions.FLOAT_BFLOAT16,
chunk_size=500,
),
],
)
get_blobs_op = core.CreateOperator(
"EstimateAllBlobSizes",
[],
["blob_names", "blob_sizes"],
options=options,
)
self.assertTrue(workspace.RunOperatorOnce(get_blobs_op))
blob_names = workspace.FetchBlob("blob_names")
blob_sizes = workspace.FetchBlob("blob_sizes")
sizes_by_name: Dict[str, int] = {}
for idx, name in enumerate(blob_names):
sizes_by_name[name.decode("utf-8")] = blob_sizes[idx]
# Note that the output blob list will include our output blob names.
expected_blobs = [
"float1", "float2", "float3", "ui16",
"blob_names", "blob_sizes"
]
self.assertEqual(set(sizes_by_name.keys()), set(expected_blobs))
def check_expected_blob_size(
name: str, num_elems: int, elem_size: int, num_chunks: int = 1
) -> None:
# The estimation code applies a fixed 40 byte per-chunk overhead to
# account for the extra space required for other fixed TensorProto
# message fields.
per_chunk_overhead = 50
expected_size = (
(num_chunks * (len(name) + per_chunk_overhead))
+ (num_elems * elem_size)
)
self.assertEqual(
sizes_by_name[name],
expected_size,
f"expected size mismatch for {name}"
)
check_expected_blob_size("ui16", 1024, 3)
check_expected_blob_size("float2", 4000, 4)
check_expected_blob_size("float3", 2, 4)
# Our serialization options request to split float1 into 500-element
# chunks when saving it. If fbgemm is available then the float1 blob
# will be serialized using 2 bytes per element instead of 4 bytes.
float1_num_chunks = 4000 // 500
if workspace.has_fbgemm:
check_expected_blob_size("float1", 4000, 2, float1_num_chunks)
else:
check_expected_blob_size("float1", 4000, 4, float1_num_chunks)
check_expected_blob_size("blob_names", len(expected_blobs), 50)
check_expected_blob_size("blob_sizes", len(expected_blobs), 8)
# Now actually save the blobs so we can compare our estimates
# to how big the serialized data actually is.
tmp_folder = self.make_tempdir()
tmp_file = str(tmp_folder / "save.output")
save_op = core.CreateOperator(
"Save",
list(sizes_by_name.keys()),
[],
absolute_path=1,
db=tmp_file,
db_type=self._db_type,
options=options,
)
self.assertTrue(workspace.RunOperatorOnce(save_op))
blob_chunks = self._read_chunk_info(Path(tmp_file))
saved_sizes: Dict[str, int] = {}
for blob_name, chunks in blob_chunks.items():
total_size = sum(chunk.value_size for chunk in chunks)
saved_sizes[blob_name] = total_size
# For sanity checking, ensure that our estimates aren't
# extremely far off
for name in expected_blobs:
estimated_size = sizes_by_name[name]
saved_size = saved_sizes[name]
difference = abs(estimated_size - saved_size)
error_pct = 100.0 * (difference / saved_size)
print(
f"{name}: estimated={estimated_size} actual={saved_size} "
f"error={error_pct:.2f}%"
)
# Don't check the blob_names blob. It is a string tensor, and we
# can't estimate string tensor sizes very well without knowing the
# individual string lengths. (Currently it requires 102 bytes to
# save, but we estimate 360).
if name == "blob_names":
continue
# Check that we are within 100 bytes, or within 25%
# We are generally quite close for tensors with fixed-width fields
# (like float), but a little farther off for tensors that use varint
# encoding.
if difference > 100:
self.assertLess(error_pct, 25.0)
if __name__ == '__main__':
unittest.main()
|