1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
import numpy as np
from hypothesis import given, settings, assume
import hypothesis.strategies as st
from caffe2.python import core, utils, workspace
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
class TestLocallyConnectedOp(serial.SerializedTestCase):
@given(N=st.integers(1, 3),
C=st.integers(1, 3),
H=st.integers(1, 5),
W=st.integers(1, 5),
M=st.integers(1, 3),
kernel=st.integers(1, 3),
op_name=st.sampled_from(["LC", "LC2D"]),
order=st.sampled_from(["NCHW", "NHWC"]),
use_bias=st.booleans(),
**hu.gcs)
@settings(deadline=10000)
def test_lc_2d(
self, N, C, H, W, M, kernel, op_name, order, use_bias, gc, dc):
if H < kernel:
kernel = H
if W < kernel:
kernel = W
assume(C == kernel * N)
op = core.CreateOperator(
op_name,
["X", "W", "b"] if use_bias else ["X", "W"],
["Y"],
kernels=[kernel, kernel],
order=order,
engine="",
)
Y_H = H - kernel + 1
Y_W = W - kernel + 1
if order == "NCHW":
X = np.random.rand(N, C, H, W).astype(np.float32) - 0.5
W = np.random.rand(Y_H, Y_W, M, C, kernel,
kernel).astype(np.float32) - 0.5
else:
X = np.random.rand(N, H, W, C).astype(np.float32) - 0.5
W = np.random.rand(Y_H, Y_W, M, kernel, kernel,
C).astype(np.float32) - 0.5
b = np.random.rand(Y_H, Y_W, M).astype(np.float32) - 0.5
inputs = [X, W, b] if use_bias else [X, W]
def lc_2d_nchw(X, W, b=None):
N, C, XH, XW = X.shape
YH, YW, M, _, KH, KW = W.shape
def conv(n, m, yh, yw):
sum = b[yh, yw, m] if b is not None else 0
for c in range(C):
for kh in range(KH):
for kw in range(KW):
hh = yh + kh
ww = yw + kw
sum += X[n, c, hh, ww] * W[yh, yw, m, c, kh, kw]
return sum
output = np.zeros((N, M, YH, YW), dtype=np.float32)
for n in range(N):
for m in range(M):
for yh in range(YH):
for yw in range(YW):
output[n, m, yh, yw] = conv(n, m, yh, yw)
return [output]
def lc_2d_nhwc(X, W, b=None):
XT = utils.NHWC2NCHW(X)
WT = np.transpose(W, [0, 1, 2, 5, 3, 4])
output = lc_2d_nchw(XT, WT, b)
return [utils.NCHW2NHWC(output[0])]
ref_op = lc_2d_nchw if order == "NCHW" else lc_2d_nhwc
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=inputs,
reference=ref_op,
)
self.assertDeviceChecks(dc, op, inputs, [0])
for i in range(len(inputs)):
self.assertGradientChecks(gc, op, inputs, i, [0])
@given(N=st.integers(1, 3),
C=st.integers(1, 3),
size=st.integers(1, 5),
M=st.integers(1, 3),
kernel=st.integers(1, 3),
op_name=st.sampled_from(["LC", "LC1D"]),
use_bias=st.booleans(),
**hu.gcs)
@settings(deadline=None)
# Increased timeout from 1 second to 5 for ROCM
def test_lc_1d(self, N, C, size, M, kernel, op_name, use_bias, gc, dc):
if size < kernel:
kernel = size
op = core.CreateOperator(
op_name,
["X", "W", "b"] if use_bias else ["X", "W"],
["Y"],
kernels=[kernel],
order="NCHW",
engine="",
)
L = size - kernel + 1
X = np.random.rand(N, C, size).astype(np.float32) - 0.5
W = np.random.rand(L, M, C, kernel).astype(np.float32) - 0.5
b = np.random.rand(L, M).astype(np.float32) - 0.5
inputs = [X, W, b] if use_bias else [X, W]
def lc_1d_nchw(X, W, b=None):
N, C, XL = X.shape
YL, M, _, KL = W.shape
def conv(n, m, yl):
sum = b[yl, m] if b is not None else 0
for c in range(C):
for kl in range(KL):
ll = yl + kl
sum += X[n, c, ll] * W[yl, m, c, kl]
return sum
output = np.zeros((N, M, YL), dtype=np.float32)
for n in range(N):
for m in range(M):
for yl in range(YL):
output[n, m, yl] = conv(n, m, yl)
return [output]
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=inputs,
reference=lc_1d_nchw,
)
self.assertDeviceChecks(dc, op, inputs, [0])
for i in range(len(inputs)):
self.assertGradientChecks(gc, op, inputs, i, [0])
@given(N=st.integers(1, 1),
C=st.integers(1, 1),
T=st.integers(2, 2),
H=st.integers(2, 2),
W=st.integers(2, 2),
M=st.integers(1, 1),
kernel=st.integers(2, 2),
op_name=st.sampled_from(["LC", "LC3D"]),
use_bias=st.booleans(),
**hu.gcs)
@settings(deadline=None)
def test_lc_3d(self, N, C, T, H, W, M, kernel, op_name, use_bias, gc, dc):
if T < kernel:
kernel = T
if H < kernel:
kernel = H
if W < kernel:
kernel = W
op = core.CreateOperator(
op_name,
["X", "W", "b"] if use_bias else ["X", "W"],
["Y"],
kernels=[kernel, kernel, kernel],
order="NCHW",
engine="",
)
Y_T = T - kernel + 1
Y_H = H - kernel + 1
Y_W = W - kernel + 1
X = np.random.rand(N, C, T, H, W).astype(np.float32) - 0.5
W = np.random.rand(Y_T, Y_H, Y_W, M, C, kernel,
kernel, kernel).astype(np.float32) - 0.5
b = np.random.rand(Y_T, Y_H, Y_W, M).astype(np.float32) - 0.5
inputs = [X, W, b] if use_bias else [X, W]
def lc_3d_nchw(X, W, b=None):
N, C, XT, XH, XW = X.shape
YT, YH, YW, M, _, KT, KH, KW = W.shape
def conv(n, m, yt, yh, yw):
sum = b[yt, yh, yw, m] if b is not None else 0
for c in range(C):
for kt in range(KT):
for kh in range(KH):
for kw in range(KW):
tt = yt + kt
hh = yh + kh
ww = yw + kw
sum += X[n, c, tt, hh, ww] * \
W[yt, yh, yw, m, c, kt, kh, kw]
return sum
output = np.zeros((N, M, YT, YH, YW), dtype=np.float32)
for n in range(N):
for m in range(M):
for yt in range(YT):
for yh in range(YH):
for yw in range(YW):
output[n, m, yt, yh, yw] = conv(
n, m, yt, yh, yw)
return [output]
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=inputs,
reference=lc_3d_nchw,
)
self.assertDeviceChecks(dc, op, inputs, [0])
for i in range(len(inputs)):
self.assertGradientChecks(gc, op, inputs, i, [0])
|