File: locally_connected_op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (228 lines) | stat: -rw-r--r-- 7,761 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228




import numpy as np
from hypothesis import given, settings, assume
import hypothesis.strategies as st

from caffe2.python import core, utils, workspace
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial



class TestLocallyConnectedOp(serial.SerializedTestCase):
    @given(N=st.integers(1, 3),
           C=st.integers(1, 3),
           H=st.integers(1, 5),
           W=st.integers(1, 5),
           M=st.integers(1, 3),
           kernel=st.integers(1, 3),
           op_name=st.sampled_from(["LC", "LC2D"]),
           order=st.sampled_from(["NCHW", "NHWC"]),
           use_bias=st.booleans(),
           **hu.gcs)
    @settings(deadline=10000)
    def test_lc_2d(
            self, N, C, H, W, M, kernel, op_name, order, use_bias, gc, dc):
        if H < kernel:
            kernel = H
        if W < kernel:
            kernel = W

        assume(C == kernel * N)

        op = core.CreateOperator(
            op_name,
            ["X", "W", "b"] if use_bias else ["X", "W"],
            ["Y"],
            kernels=[kernel, kernel],
            order=order,
            engine="",
        )

        Y_H = H - kernel + 1
        Y_W = W - kernel + 1
        if order == "NCHW":
            X = np.random.rand(N, C, H, W).astype(np.float32) - 0.5
            W = np.random.rand(Y_H, Y_W, M, C, kernel,
                               kernel).astype(np.float32) - 0.5
        else:
            X = np.random.rand(N, H, W, C).astype(np.float32) - 0.5
            W = np.random.rand(Y_H, Y_W, M, kernel, kernel,
                               C).astype(np.float32) - 0.5
        b = np.random.rand(Y_H, Y_W, M).astype(np.float32) - 0.5
        inputs = [X, W, b] if use_bias else [X, W]

        def lc_2d_nchw(X, W, b=None):
            N, C, XH, XW = X.shape
            YH, YW, M, _, KH, KW = W.shape

            def conv(n, m, yh, yw):
                sum = b[yh, yw, m] if b is not None else 0
                for c in range(C):
                    for kh in range(KH):
                        for kw in range(KW):
                            hh = yh + kh
                            ww = yw + kw
                            sum += X[n, c, hh, ww] * W[yh, yw, m, c, kh, kw]
                return sum

            output = np.zeros((N, M, YH, YW), dtype=np.float32)
            for n in range(N):
                for m in range(M):
                    for yh in range(YH):
                        for yw in range(YW):
                            output[n, m, yh, yw] = conv(n, m, yh, yw)
            return [output]

        def lc_2d_nhwc(X, W, b=None):
            XT = utils.NHWC2NCHW(X)
            WT = np.transpose(W, [0, 1, 2, 5, 3, 4])
            output = lc_2d_nchw(XT, WT, b)
            return [utils.NCHW2NHWC(output[0])]

        ref_op = lc_2d_nchw if order == "NCHW" else lc_2d_nhwc

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=inputs,
            reference=ref_op,
        )
        self.assertDeviceChecks(dc, op, inputs, [0])
        for i in range(len(inputs)):
            self.assertGradientChecks(gc, op, inputs, i, [0])

    @given(N=st.integers(1, 3),
           C=st.integers(1, 3),
           size=st.integers(1, 5),
           M=st.integers(1, 3),
           kernel=st.integers(1, 3),
           op_name=st.sampled_from(["LC", "LC1D"]),
           use_bias=st.booleans(),
           **hu.gcs)
    @settings(deadline=None)
    # Increased timeout from 1 second to 5 for ROCM
    def test_lc_1d(self, N, C, size, M, kernel, op_name, use_bias, gc, dc):
        if size < kernel:
            kernel = size

        op = core.CreateOperator(
            op_name,
            ["X", "W", "b"] if use_bias else ["X", "W"],
            ["Y"],
            kernels=[kernel],
            order="NCHW",
            engine="",
        )

        L = size - kernel + 1
        X = np.random.rand(N, C, size).astype(np.float32) - 0.5
        W = np.random.rand(L, M, C, kernel).astype(np.float32) - 0.5
        b = np.random.rand(L, M).astype(np.float32) - 0.5
        inputs = [X, W, b] if use_bias else [X, W]

        def lc_1d_nchw(X, W, b=None):
            N, C, XL = X.shape
            YL, M, _, KL = W.shape

            def conv(n, m, yl):
                sum = b[yl, m] if b is not None else 0
                for c in range(C):
                    for kl in range(KL):
                        ll = yl + kl
                        sum += X[n, c, ll] * W[yl, m, c, kl]
                return sum

            output = np.zeros((N, M, YL), dtype=np.float32)
            for n in range(N):
                for m in range(M):
                    for yl in range(YL):
                        output[n, m, yl] = conv(n, m, yl)
            return [output]

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=inputs,
            reference=lc_1d_nchw,
        )
        self.assertDeviceChecks(dc, op, inputs, [0])
        for i in range(len(inputs)):
            self.assertGradientChecks(gc, op, inputs, i, [0])

    @given(N=st.integers(1, 1),
           C=st.integers(1, 1),
           T=st.integers(2, 2),
           H=st.integers(2, 2),
           W=st.integers(2, 2),
           M=st.integers(1, 1),
           kernel=st.integers(2, 2),
           op_name=st.sampled_from(["LC", "LC3D"]),
           use_bias=st.booleans(),
           **hu.gcs)
    @settings(deadline=None)
    def test_lc_3d(self, N, C, T, H, W, M, kernel, op_name, use_bias, gc, dc):
        if T < kernel:
            kernel = T
        if H < kernel:
            kernel = H
        if W < kernel:
            kernel = W

        op = core.CreateOperator(
            op_name,
            ["X", "W", "b"] if use_bias else ["X", "W"],
            ["Y"],
            kernels=[kernel, kernel, kernel],
            order="NCHW",
            engine="",
        )

        Y_T = T - kernel + 1
        Y_H = H - kernel + 1
        Y_W = W - kernel + 1
        X = np.random.rand(N, C, T, H, W).astype(np.float32) - 0.5
        W = np.random.rand(Y_T, Y_H, Y_W, M, C, kernel,
                           kernel, kernel).astype(np.float32) - 0.5
        b = np.random.rand(Y_T, Y_H, Y_W, M).astype(np.float32) - 0.5
        inputs = [X, W, b] if use_bias else [X, W]

        def lc_3d_nchw(X, W, b=None):
            N, C, XT, XH, XW = X.shape
            YT, YH, YW, M, _, KT, KH, KW = W.shape

            def conv(n, m, yt, yh, yw):
                sum = b[yt, yh, yw, m] if b is not None else 0
                for c in range(C):
                    for kt in range(KT):
                        for kh in range(KH):
                            for kw in range(KW):
                                tt = yt + kt
                                hh = yh + kh
                                ww = yw + kw
                                sum += X[n, c, tt, hh, ww] * \
                                    W[yt, yh, yw, m, c, kt, kh, kw]
                return sum

            output = np.zeros((N, M, YT, YH, YW), dtype=np.float32)
            for n in range(N):
                for m in range(M):
                    for yt in range(YT):
                        for yh in range(YH):
                            for yw in range(YW):
                                output[n, m, yt, yh, yw] = conv(
                                    n, m, yt, yh, yw)
            return [output]

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=inputs,
            reference=lc_3d_nchw,
        )
        self.assertDeviceChecks(dc, op, inputs, [0])
        for i in range(len(inputs)):
            self.assertGradientChecks(gc, op, inputs, i, [0])