File: mod_op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (61 lines) | stat: -rw-r--r-- 1,459 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import numpy

from caffe2.python import core
from hypothesis import given, settings

import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np


@st.composite
def _data(draw):
    return draw(
        hu.tensor(
            dtype=np.int64,
            elements=st.integers(
                min_value=np.iinfo(np.int64).min, max_value=np.iinfo(np.int64).max
            )
        )
    )


class TestMod(hu.HypothesisTestCase):
    @settings(deadline=None)
    @given(
        data=_data(),
        divisor=st.integers(
            min_value=np.iinfo(np.int64).min, max_value=np.iinfo(np.int64).max
        ),
        inplace=st.booleans(),
        sign_follow_divisor=st.booleans(),
        **hu.gcs
    )
    def test_mod(
        self, data, divisor, inplace, sign_follow_divisor, gc, dc
    ):
        if divisor == 0:
            # invalid test case
            return None

        def ref(data):
            if sign_follow_divisor:
                output = data % divisor
            else:
                output = numpy.fmod(data, divisor)
            return [output]

        op = core.CreateOperator(
            'Mod',
            ['data'],
            ['data' if inplace else 'output'],
            divisor=divisor,
            sign_follow_divisor=sign_follow_divisor
        )

        self.assertReferenceChecks(gc, op, [data], ref)


if __name__ == "__main__":
    import unittest
    unittest.main()