File: moments_op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (53 lines) | stat: -rw-r--r-- 1,722 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53





from caffe2.python import core

import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
import hypothesis.strategies as st
import itertools as it
import numpy as np


class TestMomentsOp(serial.SerializedTestCase):
    def run_moments_test(self, X, axes, keepdims, gc, dc):
        if axes is None:
            op = core.CreateOperator(
                "Moments",
                ["X"],
                ["mean", "variance"],
                keepdims=keepdims,
            )
        else:
            op = core.CreateOperator(
                "Moments",
                ["X"],
                ["mean", "variance"],
                axes=axes,
                keepdims=keepdims,
            )

        def ref(X):
            mean = np.mean(X, axis=None if axes is None else tuple(
                axes), keepdims=keepdims)
            variance = np.var(X, axis=None if axes is None else tuple(
                axes), keepdims=keepdims)
            return [mean, variance]

        self.assertReferenceChecks(gc, op, [X], ref)
        self.assertDeviceChecks(dc, op, [X], [0, 1])
        self.assertGradientChecks(gc, op, [X], 0, [0, 1])

    @serial.given(X=hu.tensor(dtype=np.float32), keepdims=st.booleans(),
           num_axes=st.integers(1, 4), **hu.gcs)
    def test_moments(self, X, keepdims, num_axes, gc, dc):
        self.run_moments_test(X, None, keepdims, gc, dc)
        num_dims = len(X.shape)
        if num_dims < num_axes:
            self.run_moments_test(X, range(num_dims), keepdims, gc, dc)
        else:
            for axes in it.combinations(range(num_dims), num_axes):
                self.run_moments_test(X, axes, keepdims, gc, dc)