1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
from hypothesis import given, assume, settings
import hypothesis.strategies as st
import numpy as np
import unittest
class TestMomentumSGD(serial.SerializedTestCase):
@given(n=st.integers(4, 8), nesterov=st.booleans(), **hu.gcs)
@settings(deadline=10000)
def test_momentum_sgd(self, n, nesterov, gc, dc):
param = np.random.rand(n).astype(np.float32)
grad = np.random.rand(n).astype(np.float32)
lr = np.random.rand(1).astype(np.float32)
param_momentum = np.random.rand(n).astype(np.float32)
momentum = 0.9
def momentum_sgd(grad, param_momentum, lr, param=None):
if not nesterov:
adjusted_gradient = lr * grad + momentum * param_momentum
if param is None:
return [adjusted_gradient, adjusted_gradient]
else:
paramup = param - adjusted_gradient
return [adjusted_gradient, adjusted_gradient, paramup]
else:
m_new = momentum * param_momentum + lr * grad
grad_new = (1 + momentum) * m_new - momentum * param_momentum
if param is None:
return [grad_new, m_new]
else:
paramup = param - grad_new
return [grad_new, m_new, paramup]
op = core.CreateOperator(
"MomentumSGDUpdate",
["grad", "param_momentum", "lr", "param"],
["grad", "param_momentum", "param"],
momentum=momentum,
nesterov=int(nesterov),
)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[grad, param_momentum, lr, param],
reference=momentum_sgd
)
op_noparam = core.CreateOperator(
"MomentumSGD",
["grad", "param_momentum", "lr"],
["grad", "param_momentum"],
momentum=momentum,
nesterov=int(nesterov),
)
self.assertReferenceChecks(
device_option=gc,
op=op_noparam,
inputs=[grad, param_momentum, lr],
reference=momentum_sgd
)
@given(
inputs=hu.tensors(n=3),
momentum=st.floats(min_value=0.1, max_value=0.9),
nesterov=st.booleans(),
lr=st.floats(min_value=0.1, max_value=0.9),
data_strategy=st.data(),
**hu.gcs
)
@settings(deadline=10000)
def test_sparse_momentum_sgd(
self, inputs, momentum, nesterov, lr, data_strategy, gc, dc
):
w, grad, m = inputs
# Create an indexing array containing values which index into grad
indices = data_strategy.draw(
hu.tensor(
max_dim=1,
min_value=1,
max_value=grad.shape[0],
dtype=np.int64,
elements=st.sampled_from(np.arange(grad.shape[0])),
),
)
# Verify that the generated indices are unique
assume(
np.array_equal(
np.unique(indices.flatten()),
np.sort(indices.flatten())))
# Sparsify grad
grad = grad[indices]
# Make momentum >= 0
m = np.abs(m)
# Convert lr to a numpy array
lr = np.asarray([lr], dtype=np.float32)
op = core.CreateOperator(
"SparseMomentumSGDUpdate", ["grad", "m", "lr", "param", "indices"],
["adjusted_grad", "m", "param"],
momentum=momentum,
nesterov=int(nesterov),
device_option=gc
)
# Reference
def momentum_sgd(grad, m, lr):
lr = lr[0]
if not nesterov:
adjusted_gradient = lr * grad + momentum * m
return (adjusted_gradient, adjusted_gradient)
else:
m_new = momentum * m + lr * grad
return ((1 + momentum) * m_new - momentum * m, m_new)
def sparse(grad, m, lr, param, i):
grad_new, m_new = momentum_sgd(grad, m[i], lr)
m[i] = m_new
param[i] -= grad_new
return (grad_new, m, param)
self.assertReferenceChecks(
gc,
op,
[grad, m, lr, w, indices],
sparse)
@unittest.skip("Test is flaky, see https://github.com/pytorch/pytorch/issues/31368")
@unittest.skipIf(not workspace.has_gpu_support, "No gpu support.")
@given(n=st.integers(4, 8), nesterov=st.booleans(), **hu.gcs)
def test_fp16momentum_sgd(self, n, nesterov, gc, dc):
assume(core.IsGPUDeviceType(gc.device_type))
gpuvers = workspace.GetDeviceProperties(0)["major"]
if gc.device_type == caffe2_pb2.CUDA and gpuvers < 6:
print("No FP16 support because major version {} < 6".format(gpuvers))
return
param = np.random.rand(n).astype(np.float16)
grad = np.random.rand(n).astype(np.float16)
lr = np.random.rand(1).astype(np.float32)
param_momentum = np.random.rand(n).astype(np.float16)
momentum = 0.9
def momentum_sgd(grad, param_momentum, lr, param=None):
if not nesterov:
adjusted_gradient = lr * grad + momentum * param_momentum
paramup = param - adjusted_gradient
return [adjusted_gradient, adjusted_gradient, paramup]
else:
m_new = momentum * param_momentum + lr * grad
grad_new = (1 + momentum) * m_new - momentum * param_momentum
paramup = param - grad_new
return [grad_new, m_new, paramup]
op = core.CreateOperator(
"FP16MomentumSGDUpdate",
["grad", "param_momentum", "lr", "param"],
["grad", "param_momentum", "param"],
momentum=momentum,
nesterov=int(nesterov),
weight_decay=0.0,
)
threshold = 1e-3 if (gc.device_type == caffe2_pb2.HIP) else 1e-4
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[grad, param_momentum, lr, param],
reference=momentum_sgd,
threshold=threshold
)
if __name__ == "__main__":
unittest.main()
|