1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
from hypothesis import given
import hypothesis.strategies as st
import numpy as np
import unittest
from caffe2.python import core, workspace, dyndep
import caffe2.python.hypothesis_test_util as hu
dyndep.InitOpsLibrary("@/caffe2/caffe2/mpi:mpi_ops")
_has_mpi =False
COMM = None
RANK = 0
SIZE = 0
def SetupMPI():
try:
# pyre-fixme[21]: undefined import
from mpi4py import MPI
global _has_mpi, COMM, RANK, SIZE
_has_mpi = core.IsOperatorWithEngine("CreateCommonWorld", "MPI")
COMM = MPI.COMM_WORLD
RANK = COMM.Get_rank()
SIZE = COMM.Get_size()
except ImportError:
_has_mpi = False
@unittest.skipIf(not _has_mpi,
"MPI is not available. Skipping.")
class TestMPI(hu.HypothesisTestCase):
@given(X=hu.tensor(),
root=st.integers(min_value=0, max_value=SIZE - 1),
device_option=st.sampled_from(hu.device_options),
**hu.gcs)
def test_broadcast(self, X, root, device_option, gc, dc):
# Use mpi4py's broadcast to make sure that all nodes inherit the
# same hypothesis test.
X = COMM.bcast(X)
root = COMM.bcast(root)
device_option = COMM.bcast(device_option)
X[:] = RANK
self.assertTrue(
workspace.RunOperatorOnce(
core.CreateOperator(
"CreateCommonWorld", [], "comm", engine="MPI",
device_option=device_option)))
self.assertTrue(workspace.FeedBlob("X", X, device_option))
mpi_op = core.CreateOperator(
"Broadcast", ["comm", "X"], "X", engine="MPI", root=root,
device_option=device_option)
self.assertTrue(workspace.RunOperatorOnce(mpi_op))
new_X = workspace.FetchBlob("X")
np.testing.assert_array_equal(new_X, root)
workspace.ResetWorkspace()
@given(X=hu.tensor(),
root=st.integers(min_value=0, max_value=SIZE - 1),
device_option=st.sampled_from(hu.device_options),
**hu.gcs)
def test_reduce(self, X, root, device_option, gc, dc):
# Use mpi4py's broadcast to make sure that all nodes inherit the
# same hypothesis test.
X = COMM.bcast(X)
root = COMM.bcast(root)
device_option = COMM.bcast(device_option)
X[:] = RANK
self.assertTrue(
workspace.RunOperatorOnce(
core.CreateOperator(
"CreateCommonWorld", [], "comm", engine="MPI",
device_option=device_option)))
self.assertTrue(workspace.FeedBlob("X", X, device_option))
mpi_op = core.CreateOperator(
"Reduce", ["comm", "X"], "X_reduced", engine="MPI", root=root,
device_option=device_option)
self.assertTrue(workspace.RunOperatorOnce(mpi_op))
if (RANK == root):
new_X = workspace.FetchBlob("X")
np.testing.assert_array_equal(new_X, root)
workspace.ResetWorkspace()
@given(X=hu.tensor(),
root=st.integers(min_value=0, max_value=SIZE - 1),
device_option=st.sampled_from(hu.device_options),
inplace=st.booleans(),
**hu.gcs)
def test_allreduce(self, X, root, device_option, inplace, gc, dc):
# Use mpi4py's broadcast to make sure that all nodes inherit the
# same hypothesis test.
X = COMM.bcast(X)
root = COMM.bcast(root)
device_option = COMM.bcast(device_option)
inplace = COMM.bcast(inplace)
X[:] = RANK
self.assertTrue(
workspace.RunOperatorOnce(
core.CreateOperator(
"CreateCommonWorld", [], "comm", engine="MPI",
device_option=device_option)))
# Use mpi4py's broadcast to make sure that all copies have the same
# tensor size.
X = COMM.bcast(X)
X[:] = RANK
self.assertTrue(workspace.FeedBlob("X", X, device_option))
mpi_op = core.CreateOperator(
"Allreduce", ["comm", "X"],
"X" if inplace else "X_reduced",
engine="MPI", root=root,
device_option=device_option)
self.assertTrue(workspace.RunOperatorOnce(mpi_op))
new_X = workspace.FetchBlob("X" if inplace else "X_reduced")
np.testing.assert_array_equal(new_X, SIZE * (SIZE - 1) / 2)
workspace.ResetWorkspace()
@given(X=hu.tensor(),
device_option=st.sampled_from(hu.device_options),
specify_send_blob=st.booleans(),
specify_recv_blob=st.booleans(),
**hu.gcs)
def test_sendrecv(
self, X, device_option, specify_send_blob, specify_recv_blob,
gc, dc):
# Use mpi4py's broadcast to make sure that all nodes inherit the
# same hypothesis test.
X = COMM.bcast(X)
device_option = COMM.bcast(device_option)
specify_send_blob = COMM.bcast(specify_send_blob)
specify_recv_blob = COMM.bcast(specify_recv_blob)
X[:] = RANK
self.assertTrue(
workspace.RunOperatorOnce(
core.CreateOperator(
"CreateCommonWorld", [], "comm", engine="MPI",
device_option=device_option)))
self.assertTrue(workspace.FeedBlob("X", X, device_option))
for src in range(SIZE):
for dst in range(SIZE):
tag = src * SIZE + dst
if src == dst:
continue
elif RANK == src:
X[:] = RANK
self.assertTrue(workspace.FeedBlob("X", X, device_option))
if specify_send_blob:
self.assertTrue(workspace.FeedBlob(
"dst", np.array(dst, dtype=np.int32)))
self.assertTrue(workspace.FeedBlob(
"tag", np.array(tag, dtype=np.int32)))
mpi_op = core.CreateOperator(
"SendTensor", ["comm", "X", "dst", "tag"], [],
engine="MPI", raw_buffer=True,
device_option=device_option)
else:
mpi_op = core.CreateOperator(
"SendTensor", ["comm", "X"], [], engine="MPI",
dst=dst, tag=tag, raw_buffer=True,
device_option=device_option)
self.assertTrue(workspace.RunOperatorOnce(mpi_op))
elif RANK == dst:
if specify_recv_blob:
self.assertTrue(workspace.FeedBlob(
"src", np.array(src, dtype=np.int32)))
self.assertTrue(workspace.FeedBlob(
"tag", np.array(tag, dtype=np.int32)))
mpi_op = core.CreateOperator(
"ReceiveTensor", ["comm", "X", "src", "tag"],
["X", "src", "tag"],
engine="MPI",
src=src, tag=tag, raw_buffer=True,
device_option=device_option)
else:
mpi_op = core.CreateOperator(
"ReceiveTensor", ["comm", "X"], ["X", "src", "tag"],
engine="MPI",
src=src, tag=tag, raw_buffer=True,
device_option=device_option)
self.assertTrue(workspace.RunOperatorOnce(mpi_op))
received = workspace.FetchBlob("X")
np.testing.assert_array_equal(received, src)
src_blob = workspace.FetchBlob("src")
np.testing.assert_array_equal(src_blob, src)
tag_blob = workspace.FetchBlob("tag")
np.testing.assert_array_equal(tag_blob, tag)
# simply wait for the guys to finish
COMM.barrier()
workspace.ResetWorkspace()
if __name__ == "__main__":
SetupMPI()
import unittest
unittest.main()
|