File: one_hot_ops_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (207 lines) | stat: -rw-r--r-- 7,478 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207





from caffe2.python import core, workspace
from caffe2.proto import caffe2_pb2
from hypothesis import given, settings
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
import hypothesis.strategies as st
import numpy as np


def _one_hots():
    index_size = st.integers(min_value=1, max_value=5)
    lengths = st.lists(
        elements=st.integers(min_value=0, max_value=5))
    return st.tuples(index_size, lengths).flatmap(
        lambda x: st.tuples(
            st.just(x[0]),
            st.just(x[1]),
            st.lists(
                elements=st.integers(min_value=0, max_value=x[0] - 1),
                min_size=sum(x[1]),
                max_size=sum(x[1]))))


class TestOneHotOps(serial.SerializedTestCase):
    @serial.given(
        x=hu.tensor(
            min_dim=2, max_dim=2, dtype=np.int32,
            elements=st.integers(min_value=0, max_value=10)),
        **hu.gcs_cpu_only)
    def test_batch_one_hot(self, x, gc, dc):
        d = x.shape[1]
        lens = []
        vals = []
        for i in range(0, d):
            val = np.unique(x[:, i])
            vals.extend(val)
            lens.append(len(val))
        lens = np.array(lens, dtype=np.int32)
        vals = np.array(vals, dtype=np.int32)

        def ref(x, lens, vals):
            output_dim = vals.size
            ret = np.zeros((x.shape[0], output_dim)).astype(x.dtype)
            p = 0
            for i, l in enumerate(lens):
                for j in range(0, l):
                    v = vals[p + j]
                    ret[x[:, i] == v, p + j] = 1
                p += lens[i]
            return (ret, )

        op = core.CreateOperator('BatchOneHot', ["X", "LENS", "VALS"], ["Y"])
        self.assertReferenceChecks(gc, op, [x, lens, vals], ref)

    @given(
        x=hu.tensor(
            min_dim=2, max_dim=2, dtype=np.float32,
            elements=st.integers(min_value=-5, max_value=5)),
        seed=st.integers(min_value=0, max_value=1000),
        **hu.gcs_cpu_only)
    @settings(deadline=10000)
    def test_batch_bucketized_one_hot(self, x, seed, gc, dc):
        np.random.seed(seed)
        d = x.shape[1]
        lens = np.random.randint(low=1, high=5, size=d)
        boundaries = []
        for i in range(d):
            # add [0, 0] as duplicated boundary for duplicated bucketization
            if lens[i] > 2:
                cur_boundary = np.append(
                    np.random.randn(lens[i] - 2) * 5, [0, 0])
            else:
                cur_boundary = np.random.randn(lens[i]) * 5
            cur_boundary.sort()
            boundaries += cur_boundary.tolist()

        lens = np.array(lens, dtype=np.int32)
        boundaries = np.array(boundaries, dtype=np.float32)

        def ref(x, lens, boundaries):
            output_dim = lens.size + boundaries.size
            ret = np.zeros((x.shape[0], output_dim)).astype(x.dtype)
            boundary_offset = 0
            output_offset = 0
            for i, l in enumerate(lens):
                bucket_idx_right = np.digitize(
                    x[:, i],
                    boundaries[boundary_offset:boundary_offset + l],
                    right=True
                )
                bucket_idx_left = np.digitize(
                    x[:, i],
                    boundaries[boundary_offset:boundary_offset + l],
                    right=False
                )
                bucket_idx = np.floor_divide(
                    np.add(bucket_idx_right, bucket_idx_left), 2)
                for j in range(x.shape[0]):
                    ret[j, output_offset + bucket_idx[j]] = 1.0
                boundary_offset += lens[i]
                output_offset += (lens[i] + 1)
            return (ret, )

        op = core.CreateOperator('BatchBucketOneHot',
                                 ["X", "LENS", "BOUNDARIES"], ["Y"])
        self.assertReferenceChecks(gc, op, [x, lens, boundaries], ref)

    @serial.given(
        hot_indices=hu.tensor(
            min_dim=1, max_dim=1, dtype=np.int64,
            elements=st.integers(min_value=0, max_value=42)),
        end_padding=st.integers(min_value=0, max_value=2),
        **hu.gcs)
    def test_one_hot(self, hot_indices, end_padding, gc, dc):

        def one_hot_ref(hot_indices, size):
            out = np.zeros([len(hot_indices), size], dtype=float)
            x = enumerate(hot_indices)
            for i, x in enumerate(hot_indices):
                out[i, x] = 1.
            return (out, )

        size = np.array(max(hot_indices) + end_padding + 1, dtype=np.int64)
        if size == 0:
            size = 1
        op = core.CreateOperator('OneHot', ['hot_indices', 'size'], ['output'])
        self.assertReferenceChecks(
            gc,
            op,
            [hot_indices, size],
            one_hot_ref,
            input_device_options={'size': core.DeviceOption(caffe2_pb2.CPU)})

    @serial.given(hot_indices=_one_hots())
    def test_segment_one_hot(self, hot_indices):
        index_size, lengths, indices = hot_indices

        index_size = np.array(index_size, dtype=np.int64)
        lengths = np.array(lengths, dtype=np.int32)
        indices = np.array(indices, dtype=np.int64)

        def segment_one_hot_ref(lengths, hot_indices, size):
            offset = 0
            out = np.zeros([len(lengths), size], dtype=float)
            for i, length in enumerate(lengths):
                for idx in hot_indices[offset:offset + length]:
                    out[i, idx] = 1.
                offset += length
            return (out, )

        op = core.CreateOperator(
            'SegmentOneHot',
            ['lengths', 'hot_indices', 'size'],
            ['output'])
        self.assertReferenceChecks(
            hu.cpu_do,
            op,
            [lengths, indices, index_size],
            segment_one_hot_ref)

    @given(
        x=hu.tensor(
            min_dim=2, max_dim=2, dtype=np.float32,
            elements=st.integers(min_value=-5, max_value=5)),
        seed=st.integers(min_value=0, max_value=1000),
        **hu.gcs_cpu_only)
    def test_batch_bucket_one_hot_shape_inference(self, x, seed, gc, dc):
        np.random.seed(seed)
        d = x.shape[1]
        lens = np.random.randint(low=1, high=5, size=d)
        boundaries = []
        for i in range(d):
            # add [0, 0] as duplicated boundary for duplicated bucketization
            if lens[i] > 2:
                cur_boundary = np.append(
                    np.random.randn(lens[i] - 2) * 5, [0, 0])
            else:
                cur_boundary = np.random.randn(lens[i]) * 5
            cur_boundary.sort()
            boundaries += cur_boundary.tolist()

        lens = np.array(lens, dtype=np.int32)
        boundaries = np.array(boundaries, dtype=np.float32)

        workspace.FeedBlob('lens', lens)
        workspace.FeedBlob('boundaries', boundaries)
        workspace.FeedBlob('x', x)

        net = core.Net("batch_bucket_one_hot_test")
        result = net.BatchBucketOneHot(["x", "lens", "boundaries"], 1)
        (shapes, types) = workspace.InferShapesAndTypes([net])
        workspace.RunNetOnce(net)

        self.assertEqual(shapes[result], list(workspace.blobs[result].shape))
        self.assertEqual(
            shapes[result], [x.shape[0], lens.shape[0] + boundaries.shape[0]])
        self.assertEqual(types[result], core.DataType.FLOAT)


if __name__ == "__main__":
    import unittest
    unittest.main()