1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
from caffe2.python import core
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
from hypothesis import given, settings
import hypothesis.strategies as st
import numpy as np
import unittest
class TestPiecewiseLinearTransform(serial.SerializedTestCase):
def constrain(self, v, min_val, max_val):
def constrain_internal(x):
return min(max(x, min_val), max_val)
return np.array([constrain_internal(x) for x in v])
def transform(self, x, bounds, slopes, intercepts):
n = len(slopes)
x_ = self.constrain(x, bounds[0], bounds[-1])
index = np.minimum(
np.maximum(
np.searchsorted(bounds, x_) - 1,
0
),
n - 1
)
y = slopes[index] * x_ + intercepts[index]
return y
@given(n=st.integers(1, 100), **hu.gcs_cpu_only)
@settings(deadline=10000)
def test_multi_predictions_params_from_arg(self, n, gc, dc):
slopes = np.random.uniform(-1, 1, (2, n)).astype(np.float32)
intercepts = np.random.uniform(-1, 1, (2, n)).astype(np.float32)
bounds = np.random.uniform(0.1, 0.9,
(2, n + 1)).astype(np.float32)
bounds.sort()
X = np.random.uniform(0, 1, (n, 2)).astype(np.float32)
op = core.CreateOperator(
"PiecewiseLinearTransform", ["X"], ["Y"],
bounds=bounds.flatten().tolist(),
slopes=slopes.flatten().tolist(),
intercepts=intercepts.flatten().tolist(),
)
def piecewise(x, *args, **kw):
x_0 = self.transform(
x[:, 0], bounds[0, :], slopes[0, :], intercepts[0, :])
x_1 = self.transform(
x[:, 1], bounds[1, :], slopes[1, :], intercepts[1, :])
return [np.vstack((x_0, x_1)).transpose()]
self.assertReferenceChecks(gc, op, [X], piecewise)
self.assertDeviceChecks(dc, op, [X], [0])
@given(n=st.integers(1, 100), **hu.gcs_cpu_only)
@settings(deadline=10000)
def test_binary_predictions_params_from_arg(self, n, gc, dc):
slopes = np.random.uniform(-1, 1, size=n).astype(np.float32)
intercepts = np.random.uniform(-1, 1, size=n).astype(np.float32)
bounds = np.random.uniform(0.1, 0.9, n + 1).astype(np.float32)
bounds.sort()
X = np.random.uniform(0, 1, (n, 2)).astype(np.float32)
X[:, 0] = 1 - X[:, 1]
op = core.CreateOperator(
"PiecewiseLinearTransform", ["X"], ["Y"],
bounds=bounds.flatten().tolist(),
slopes=slopes.flatten().tolist(),
intercepts=intercepts.flatten().tolist(),
pieces=n,
binary=True,
)
def piecewise(x):
x_ = self.transform(x[:, 1], bounds, slopes, intercepts)
return [np.vstack((1 - x_, x_)).transpose()]
self.assertReferenceChecks(gc, op, [X], piecewise)
self.assertDeviceChecks(dc, op, [X], [0])
@given(n=st.integers(1, 100), **hu.gcs_cpu_only)
@settings(deadline=10000)
def test_multi_predictions_params_from_input(self, n, gc, dc):
slopes = np.random.uniform(-1, 1, (2, n)).astype(np.float32)
intercepts = np.random.uniform(-1, 1, (2, n)).astype(np.float32)
bounds = np.random.uniform(0.1, 0.9,
(2, n + 1)).astype(np.float32)
bounds.sort()
X = np.random.uniform(0, 1, (n, 2)).astype(np.float32)
op = core.CreateOperator(
"PiecewiseLinearTransform",
["X", "bounds", "slopes", "intercepts"],
["Y"],
)
def piecewise(x, bounds, slopes, intercepts):
x_0 = self.transform(
x[:, 0], bounds[0, :], slopes[0, :], intercepts[0, :])
x_1 = self.transform(
x[:, 1], bounds[1, :], slopes[1, :], intercepts[1, :])
return [np.vstack((x_0, x_1)).transpose()]
self.assertReferenceChecks(
gc, op, [X, bounds, slopes, intercepts], piecewise)
self.assertDeviceChecks(dc, op, [X, bounds, slopes, intercepts], [0])
@given(n=st.integers(1, 100), **hu.gcs_cpu_only)
@settings(deadline=10000)
def test_binary_predictions_params_from_input(self, n, gc, dc):
slopes = np.random.uniform(-1, 1, size=n).astype(np.float32)
intercepts = np.random.uniform(-1, 1, size=n).astype(np.float32)
bounds = np.random.uniform(0.1, 0.9, n + 1).astype(np.float32)
bounds.sort()
X = np.random.uniform(0, 1, (n, 2)).astype(np.float32)
X[:, 0] = 1 - X[:, 1]
op = core.CreateOperator(
"PiecewiseLinearTransform",
["X", "bounds", "slopes", "intercepts"],
["Y"],
binary=True,
)
def piecewise(x, bounds, slopes, intercepts):
x_ = self.transform(x[:, 1], bounds, slopes, intercepts)
return [np.vstack((1 - x_, x_)).transpose()]
self.assertReferenceChecks(
gc, op, [X, bounds, slopes, intercepts], piecewise)
self.assertDeviceChecks(dc, op, [X, bounds, slopes, intercepts], [0])
@given(n=st.integers(1, 100), **hu.gcs_cpu_only)
@settings(deadline=10000)
def test_1D_predictions_params_from_input(self, n, gc, dc):
slopes = np.random.uniform(-1, 1, size=n).astype(np.float32)
intercepts = np.random.uniform(-1, 1, size=n).astype(np.float32)
bounds = np.random.uniform(0.1, 0.9, n + 1).astype(np.float32)
bounds.sort()
X = np.random.uniform(0, 1, size=n).astype(np.float32)
op = core.CreateOperator(
"PiecewiseLinearTransform",
["X", "bounds", "slopes", "intercepts"],
["Y"],
binary=True,
)
def piecewise(x, bounds, slopes, intercepts):
x_ = self.transform(x, bounds, slopes, intercepts)
return [x_]
self.assertReferenceChecks(
gc, op, [X, bounds, slopes, intercepts], piecewise)
self.assertDeviceChecks(dc, op, [X, bounds, slopes, intercepts], [0])
if __name__ == "__main__":
unittest.main()
|