File: rank_loss_operator_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (147 lines) | stat: -rw-r--r-- 5,752 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147





from caffe2.python import core, workspace
from hypothesis import given
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
import hypothesis.strategies as st
import numpy as np


class TestPairWiseLossOps(serial.SerializedTestCase):
    @given(X=hu.arrays(dims=[2, 1],
                       elements=hu.floats(min_value=0.0, max_value=10.0)),
           label=hu.arrays(dims=[2, 1],
                           elements=st.integers(min_value=0, max_value=1),
                           dtype=np.float32),
           **hu.gcs_cpu_only)
    def test_pair_wise_loss_predictions(self, X, label, gc, dc):
        workspace.FeedBlob('X', X)
        workspace.FeedBlob('label', label)
        new_label = np.array([label[1], label[0]])
        new_x = np.array([X[1], X[0]])
        workspace.FeedBlob('new_x', new_x)
        workspace.FeedBlob('new_label', new_label)
        net = core.Net('net')
        net.PairWiseLoss(['X', 'label'], ['output'])
        net.PairWiseLoss(['new_x', 'new_label'], ['new_output'])
        plan = core.Plan('predict_data')
        plan.AddStep(core.execution_step('predict_data',
                                         [net], num_iter=1))
        workspace.RunPlan(plan)
        output = workspace.FetchBlob('output')
        new_output = workspace.FetchBlob('new_output')
        sign = 1 if label[0] > label[1] else -1
        if label[0] == label[1]:
            self.assertEqual(np.asscalar(output), 0)
            return

        self.assertAlmostEqual(
            np.asscalar(output),
            np.asscalar(np.log(1 + np.exp(sign * (X[1] - X[0])))),
            delta=1e-4
        )
        # check swapping row order doesn't alter overall loss
        self.assertAlmostEqual(output, new_output)

    @given(X=hu.arrays(dims=[2, 1],
                       elements=hu.floats(min_value=0.0, max_value=10.0)),
           label=hu.arrays(dims=[2, 1],
                           elements=st.integers(min_value=0, max_value=1),
                           dtype=np.float32),
           dY=hu.arrays(dims=[1],
                        elements=hu.floats(min_value=1, max_value=10)),
           **hu.gcs_cpu_only)
    def test_pair_wise_loss_gradient(self, X, label, dY, gc, dc):
        workspace.FeedBlob('X', X)
        workspace.FeedBlob('dY', dY)
        workspace.FeedBlob('label', label)
        net = core.Net('net')
        net.PairWiseLossGradient(
            ['X', 'label', 'dY'],
            ['dX'],
        )
        plan = core.Plan('predict_data')
        plan.AddStep(core.execution_step('predict_data',
                                         [net], num_iter=1))
        workspace.RunPlan(plan)
        dx = workspace.FetchBlob('dX')
        sign = 1 if label[0] > label[1] else -1
        if label[0] == label[1]:
            self.assertEqual(np.asscalar(dx[0]), 0)
            return
        self.assertAlmostEqual(
            np.asscalar(dx[0]),
            np.asscalar(-dY[0] * sign / (1 + np.exp(sign * (X[0] - X[1])))),
            delta=1e-2 * abs(np.asscalar(dx[0])))

        self.assertEqual(np.asscalar(dx[0]), np.asscalar(-dx[1]))
        delta = 1e-3
        up_x = np.array([[X[0] + delta], [X[1]]], dtype=np.float32)
        down_x = np.array([[X[0] - delta], [X[1]]], dtype=np.float32)
        workspace.FeedBlob('up_x', up_x)
        workspace.FeedBlob('down_x', down_x)
        new_net = core.Net('new_net')
        new_net.PairWiseLoss(['up_x', 'label'], ['up_output'])
        new_net.PairWiseLoss(['down_x', 'label'], ['down_output'])

        plan = core.Plan('predict_data')
        plan.AddStep(core.execution_step('predict_data', [new_net], num_iter=1))
        workspace.RunPlan(plan)
        down_output_pred = workspace.FetchBlob('down_output')
        up_output_pred = workspace.FetchBlob('up_output')
        np.testing.assert_allclose(
            np.asscalar(dx[0]),
            np.asscalar(
                0.5 * dY[0] *
                (up_output_pred[0] - down_output_pred[0]) / delta),
            rtol=1e-2, atol=1e-2)

    @serial.given(n=st.integers(0, 10), k=st.integers(1, 5), **hu.gcs_cpu_only)
    def test_pair_wise_loss_batch(self, n, k, gc, dc):
        lengths = np.random.randint(k, size=n).astype(np.int32) + 1
        X = np.random.rand(sum(lengths)).astype(np.float32)
        label = np.random.randint(k, size=sum(lengths)).astype(np.float32)

        def pair_wise_op(X, label, lengths):
            N = lengths.size
            output = np.zeros(N).astype(np.float32)

            def f(x):
                return np.log(1 + np.exp(x))

            offset = 0
            for idx in range(N):
                offset += lengths[idx - 1] if idx > 0 else 0
                count = 0
                for i in range(offset, offset + lengths[idx]):
                    for j in range(offset, i):
                        if label[i] == label[j]:
                            continue
                        sign = 1 if label[i] > label[j] else -1
                        output[idx] += f(sign * (X[j] - X[i]))
                        count += 1
                if count > 0:
                    output[idx] /= count
            return [output]

        op = core.CreateOperator(
            'PairWiseLoss',
            ['X', 'label', 'lengths'],
            'out'
        )

        # Check against numpy reference
        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[X, label, lengths],
            reference=pair_wise_op,
        )
        # Check over multiple devices
        self.assertDeviceChecks(dc, op, [X, label, lengths], [0])
        # Gradient check
        self.assertGradientChecks(gc, op, [X, label, lengths], 0, [0])