1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
from caffe2.python import core, workspace
from hypothesis import given
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
import hypothesis.strategies as st
import numpy as np
class TestPairWiseLossOps(serial.SerializedTestCase):
@given(X=hu.arrays(dims=[2, 1],
elements=hu.floats(min_value=0.0, max_value=10.0)),
label=hu.arrays(dims=[2, 1],
elements=st.integers(min_value=0, max_value=1),
dtype=np.float32),
**hu.gcs_cpu_only)
def test_pair_wise_loss_predictions(self, X, label, gc, dc):
workspace.FeedBlob('X', X)
workspace.FeedBlob('label', label)
new_label = np.array([label[1], label[0]])
new_x = np.array([X[1], X[0]])
workspace.FeedBlob('new_x', new_x)
workspace.FeedBlob('new_label', new_label)
net = core.Net('net')
net.PairWiseLoss(['X', 'label'], ['output'])
net.PairWiseLoss(['new_x', 'new_label'], ['new_output'])
plan = core.Plan('predict_data')
plan.AddStep(core.execution_step('predict_data',
[net], num_iter=1))
workspace.RunPlan(plan)
output = workspace.FetchBlob('output')
new_output = workspace.FetchBlob('new_output')
sign = 1 if label[0] > label[1] else -1
if label[0] == label[1]:
self.assertEqual(np.asscalar(output), 0)
return
self.assertAlmostEqual(
np.asscalar(output),
np.asscalar(np.log(1 + np.exp(sign * (X[1] - X[0])))),
delta=1e-4
)
# check swapping row order doesn't alter overall loss
self.assertAlmostEqual(output, new_output)
@given(X=hu.arrays(dims=[2, 1],
elements=hu.floats(min_value=0.0, max_value=10.0)),
label=hu.arrays(dims=[2, 1],
elements=st.integers(min_value=0, max_value=1),
dtype=np.float32),
dY=hu.arrays(dims=[1],
elements=hu.floats(min_value=1, max_value=10)),
**hu.gcs_cpu_only)
def test_pair_wise_loss_gradient(self, X, label, dY, gc, dc):
workspace.FeedBlob('X', X)
workspace.FeedBlob('dY', dY)
workspace.FeedBlob('label', label)
net = core.Net('net')
net.PairWiseLossGradient(
['X', 'label', 'dY'],
['dX'],
)
plan = core.Plan('predict_data')
plan.AddStep(core.execution_step('predict_data',
[net], num_iter=1))
workspace.RunPlan(plan)
dx = workspace.FetchBlob('dX')
sign = 1 if label[0] > label[1] else -1
if label[0] == label[1]:
self.assertEqual(np.asscalar(dx[0]), 0)
return
self.assertAlmostEqual(
np.asscalar(dx[0]),
np.asscalar(-dY[0] * sign / (1 + np.exp(sign * (X[0] - X[1])))),
delta=1e-2 * abs(np.asscalar(dx[0])))
self.assertEqual(np.asscalar(dx[0]), np.asscalar(-dx[1]))
delta = 1e-3
up_x = np.array([[X[0] + delta], [X[1]]], dtype=np.float32)
down_x = np.array([[X[0] - delta], [X[1]]], dtype=np.float32)
workspace.FeedBlob('up_x', up_x)
workspace.FeedBlob('down_x', down_x)
new_net = core.Net('new_net')
new_net.PairWiseLoss(['up_x', 'label'], ['up_output'])
new_net.PairWiseLoss(['down_x', 'label'], ['down_output'])
plan = core.Plan('predict_data')
plan.AddStep(core.execution_step('predict_data', [new_net], num_iter=1))
workspace.RunPlan(plan)
down_output_pred = workspace.FetchBlob('down_output')
up_output_pred = workspace.FetchBlob('up_output')
np.testing.assert_allclose(
np.asscalar(dx[0]),
np.asscalar(
0.5 * dY[0] *
(up_output_pred[0] - down_output_pred[0]) / delta),
rtol=1e-2, atol=1e-2)
@serial.given(n=st.integers(0, 10), k=st.integers(1, 5), **hu.gcs_cpu_only)
def test_pair_wise_loss_batch(self, n, k, gc, dc):
lengths = np.random.randint(k, size=n).astype(np.int32) + 1
X = np.random.rand(sum(lengths)).astype(np.float32)
label = np.random.randint(k, size=sum(lengths)).astype(np.float32)
def pair_wise_op(X, label, lengths):
N = lengths.size
output = np.zeros(N).astype(np.float32)
def f(x):
return np.log(1 + np.exp(x))
offset = 0
for idx in range(N):
offset += lengths[idx - 1] if idx > 0 else 0
count = 0
for i in range(offset, offset + lengths[idx]):
for j in range(offset, i):
if label[i] == label[j]:
continue
sign = 1 if label[i] > label[j] else -1
output[idx] += f(sign * (X[j] - X[i]))
count += 1
if count > 0:
output[idx] /= count
return [output]
op = core.CreateOperator(
'PairWiseLoss',
['X', 'label', 'lengths'],
'out'
)
# Check against numpy reference
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[X, label, lengths],
reference=pair_wise_op,
)
# Check over multiple devices
self.assertDeviceChecks(dc, op, [X, label, lengths], [0])
# Gradient check
self.assertGradientChecks(gc, op, [X, label, lengths], 0, [0])
|