File: recurrent_network_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (383 lines) | stat: -rw-r--r-- 14,048 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383





from caffe2.python import recurrent, workspace
from caffe2.python.model_helper import ModelHelper
from hypothesis import given, settings
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
import hypothesis.strategies as st
import numpy as np

class RecurrentNetworkTest(serial.SerializedTestCase):
    @given(T=st.integers(1, 4),
           n=st.integers(1, 5),
           d=st.integers(1, 5))
    @settings(deadline=10000)
    def test_sum_mul(self, T, n, d):
        model = ModelHelper(name='external')

        input_blob, initial_input_blob = model.net.AddExternalInputs(
            'input', 'initial_input')

        step = ModelHelper(name='step', param_model=model)
        input_t, output_t_prev = step.net.AddExternalInput(
            'input_t', 'output_t_prev')
        output_t_internal = step.net.Sum([input_t, output_t_prev])
        output_t = step.net.Mul([input_t, output_t_internal])
        step.net.AddExternalOutput(output_t)

        self.simple_rnn(T, n, d, model, step, input_t, output_t, output_t_prev,
                        input_blob, initial_input_blob)

    @given(T=st.integers(1, 4),
           n=st.integers(1, 5),
           d=st.integers(1, 5))
    @settings(deadline=10000)
    def test_mul(self, T, n, d):
        model = ModelHelper(name='external')

        input_blob, initial_input_blob = model.net.AddExternalInputs(
            'input', 'initial_input')

        step = ModelHelper(name='step', param_model=model)
        input_t, output_t_prev = step.net.AddExternalInput(
            'input_t', 'output_t_prev')
        output_t = step.net.Mul([input_t, output_t_prev])
        step.net.AddExternalOutput(output_t)

        self.simple_rnn(T, n, d, model, step, input_t, output_t, output_t_prev,
                        input_blob, initial_input_blob)

    @given(T=st.integers(1, 4),
           n=st.integers(1, 5),
           d=st.integers(1, 5))
    def test_extract(self, T, n, d):
        model = ModelHelper(name='external')
        workspace.ResetWorkspace()

        input_blob, initial_input_blob = model.net.AddExternalInputs(
            'input', 'initial_input')

        step = ModelHelper(name='step', param_model=model)
        input_t, output_t_prev = step.net.AddExternalInput(
            'input_t', 'output_t_prev')
        output_t = step.net.Mul([input_t, output_t_prev])
        step.net.AddExternalOutput(output_t)

        inputs = np.random.randn(T, n, d).astype(np.float32)
        initial_input = np.random.randn(1, n, d).astype(np.float32)
        recurrent.recurrent_net(
            net=model.net,
            cell_net=step.net,
            inputs=[(input_t, input_blob)],
            initial_cell_inputs=[(output_t_prev, initial_input_blob)],
            links={output_t_prev: output_t},
            scope="test_rnn_sum_mull",
        )

        workspace.blobs[input_blob] = inputs
        workspace.blobs[initial_input_blob] = initial_input

        workspace.RunNetOnce(model.param_init_net)
        workspace.CreateNet(model.net)

        prefix = "extractTest"

        workspace.RunNet(model.net.Proto().name, T)
        retrieved_blobs = recurrent.retrieve_step_blobs(
            model.net, prefix
        )

        # needed for python3.6, which returns bytearrays instead of str
        retrieved_blobs = [x.decode() for x in retrieved_blobs]

        for i in range(T):
            blob_name = prefix + "_" + "input_t" + str(i)
            self.assertTrue(
                blob_name in retrieved_blobs,
                "blob extraction failed on timestep {}\
                    . \n\n Extracted Blobs: {} \n\n Looking for {}\
                    .".format(i, retrieved_blobs, blob_name)
            )

    def simple_rnn(self, T, n, d, model, step, input_t, output_t, output_t_prev,
                   input_blob, initial_input_blob):

        input = np.random.randn(T, n, d).astype(np.float32)
        initial_input = np.random.randn(1, n, d).astype(np.float32)
        print(locals())
        recurrent.recurrent_net(
            net=model.net,
            cell_net=step.net,
            inputs=[(input_t, input_blob)],
            initial_cell_inputs=[(output_t_prev, initial_input_blob)],
            links={output_t_prev: output_t},
            scope="test_rnn_sum_mull",
        )
        workspace.blobs[input_blob] = input
        workspace.blobs[initial_input_blob] = initial_input

        op = model.net._net.op[-1]
        # Just conviniently store all inputs in an array in the same
        # order as op.input
        inputs = [workspace.blobs[name] for name in op.input]

        def reference(input, initial_input):
            global_ws_name = workspace.CurrentWorkspace()
            input_all = workspace.blobs[input_blob]

            workspace.SwitchWorkspace("ref", create_if_missing=True)
            workspace.blobs[input_blob] = input
            workspace.blobs[output_t_prev] = initial_input.reshape(n, d)
            res_all = np.zeros(shape=input.shape, dtype=np.float32)

            for t_cur in range(T):
                workspace.blobs[input_t] = input_all[t_cur]
                workspace.RunNetOnce(step.net)
                result_t = workspace.blobs[output_t]
                workspace.blobs[output_t_prev] = result_t
                res_all[t_cur] = result_t

            workspace.SwitchWorkspace(global_ws_name)

            shape = list(input.shape)
            shape[0] = 1
            return (res_all, res_all[-1].reshape(shape))

        self.assertReferenceChecks(
            device_option=hu.cpu_do,
            op=op,
            inputs=inputs,
            reference=reference,
            output_to_grad=op.output[0],
            outputs_to_check=[0, 1],
        )

        self.assertGradientChecks(
            device_option=hu.cpu_do,
            op=op,
            inputs=inputs,
            outputs_to_check=0,
            outputs_with_grads=[0],
            threshold=0.01,
            stepsize=0.005,
        )

    # Hacky version of 1-D convolution
    def _convolution_1d(
        self,
        model,
        inputs,
        conv_window,
        conv_filter,
        conv_bias,
        output_name,
        left_pad,
    ):
        if left_pad:
            padding_width = conv_window - 1
        else:
            padding_width = 0

        # [batch_size, inputs_length, state_size]
        inputs_transposed = model.net.Transpose(
            inputs,
            'inputs_transposed',
            axes=[1, 0, 2],
        )
        # [batch_size, 1, inputs_length, state_size]
        inputs_transposed_4d = model.net.ExpandDims(
            inputs_transposed,
            'inputs_transposed_4d',
            dims=[1],
        )
        # [batch_size, 1, inputs_length - conv_window + 1, state_size]
        output_transposed_4d = model.net.Conv(
            [inputs_transposed_4d, conv_filter, conv_bias],
            output_name + '_transposed_4d',
            kernel_h=1,
            kernel_w=conv_window,
            order='NHWC',
            pad_t=0,
            pad_l=padding_width,
            pad_b=0,
            pad_r=0,
        )
        # [batch_size, inputs_length - conv_window + 1, state_size]
        output_transposed = model.net.Squeeze(
            output_transposed_4d,
            output_name + '_transposed',
            dims=[1],
        )
        # [inputs_length - conv_window + 1, batch_size, state_size]
        output = model.net.Transpose(
            output_transposed,
            output_name,
            axes=[1, 0, 2],
        )
        return output

    @given(sequence_length=st.integers(3, 7),
           conv_window=st.integers(1, 3),
           batch_size=st.integers(1, 5),
           state_size=st.integers(1, 5))
    def test_stateful_convolution_forward_only(
        self,
        sequence_length,
        conv_window,
        batch_size,
        state_size,
    ):
        '''
        This unit test demonstrates another ways of using RecurrentNetwork.

        Imagine, that you want to compute convolution over a sequence,
        but sequence elements are not given to you from the beginning,
        so you have to loop over the sequence and compute convolution
        for each element separately. This situation can occur,
        during inference/generation step of the neural networks.

        First of all, you have to provide actual input via recurrent states,
        since the input of RecurrentNetwork should be known in advance.
        Here, we use `fake_inputs` as the input,
        and it's used by the op to extract batch size and sequence length.
        The actual input sequence is stored in the recurrent state
        `input_state`. At every step we generate a new element via input_state_t
        (in this example, input_state_t is generated at random, but
        in a real situation it can be created using convolution output
        from the previous step).

        A few important differences from regular RecurrentNetwork usecase:

        1. input_state_t_prev is not only a single previous element of
        input_state sequence. It is last conv_window elements including (!)
        the current one - input_state_t. We specify that using `link_window`
        argument of RecurrentNetwork. We need that many elements to
        compute a single convolution step. Also, note that `link_window`
        specifies how many elements to link starting at
        `timestep` + `link_offset` position.

        2. First few steps might require additional zero padding from the left,
        since there is no enough element of input_state sequence are available.
        So the initial_state for input_state contains several elements
        (exactly how many pads we need for the first step). Also, because of
        that all offseting over input_state sequence is being shifted
        by length of initial_input_state: see `link_offset` and `alias_offset`
        arguments of RecurrentNetwork.

        In this test, we assert that we get the same result
        if we apply convolution over all elements simultaneously,
        since the whole input_state sequence was generated at the end.
    '''
        model = ModelHelper(name='model')
        fake_inputs = model.param_init_net.UniformFill(
            [],
            'fake_inputs',
            min=-1.0,
            max=1.0,
            shape=[sequence_length, batch_size, state_size],
        )
        initial_input_state = model.param_init_net.ConstantFill(
            [],
            'initial_input_state',
            value=0.0,
            shape=[conv_window - 1, batch_size, state_size],
        )
        initial_output_state = model.param_init_net.ConstantFill(
            [],
            'initial_output_state',
            value=0.0,
            shape=[1, batch_size, state_size],
        )
        step_model = ModelHelper(name='step_model', param_model=model)
        (
            fake_input_t,
            timestep,
            input_state_t_prev,
        ) = step_model.net.AddExternalInputs(
            'fake_input_t',
            'timestep',
            'input_state_t_prev',
        )
        conv_filter = step_model.param_init_net.XavierFill(
            [],
            'conv_filter',
            shape=[state_size, 1, conv_window, state_size],
        )
        conv_bias = step_model.param_init_net.ConstantFill(
            [],
            'conv_bias',
            shape=[state_size],
            value=0.0,
        )
        step_model.params.extend([conv_filter, conv_bias])
        input_state_t = step_model.net.UniformFill(
            [],
            'input_state_t',
            min=-1.0,
            max=1.0,
            shape=[1, batch_size, state_size],
        )
        output_state_t = self._convolution_1d(
            model=step_model,
            inputs=input_state_t_prev,
            conv_window=conv_window,
            conv_filter=conv_filter,
            conv_bias=conv_bias,
            output_name='output_state_t',
            left_pad=False,
        )
        initial_recurrent_states = [initial_input_state, initial_output_state]
        all_inputs = (
            [fake_inputs] + step_model.params + initial_recurrent_states
        )
        all_outputs = ['input_state_all', 'output_state_all']
        recurrent_states = ['input_state', 'output_state']
        input_state_all, output_state_all, _ = model.net.RecurrentNetwork(
            all_inputs,
            all_outputs + ['step_workspaces'],
            param=[all_inputs.index(p) for p in step_model.params],
            alias_src=recurrent_states,
            alias_dst=all_outputs,
            alias_offset=[conv_window - 1, 1],
            recurrent_states=recurrent_states,
            initial_recurrent_state_ids=[
                all_inputs.index(s) for s in initial_recurrent_states
            ],
            link_internal=[
                str(input_state_t_prev),
                str(input_state_t),
                str(output_state_t),
            ],
            link_external=['input_state', 'input_state', 'output_state'],
            link_offset=[0, conv_window - 1, 1],
            link_window=[conv_window, 1, 1],
            backward_link_internal=[],
            backward_link_external=[],
            backward_link_offset=[],
            step_net=step_model.net.Proto(),
            timestep='timestep' if timestep is None else str(timestep),
            outputs_with_grads=[],
        )

        output_states_2 = self._convolution_1d(
            model=model,
            inputs=input_state_all,
            conv_window=conv_window,
            conv_filter=conv_filter,
            conv_bias=conv_bias,
            output_name='output_states_2',
            left_pad=True,
        )

        workspace.RunNetOnce(model.param_init_net)
        workspace.RunNetOnce(model.net)

        np.testing.assert_almost_equal(
            workspace.FetchBlob(output_state_all),
            workspace.FetchBlob(output_states_2),
            decimal=3,
        )