1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
from caffe2.python import recurrent, workspace
from caffe2.python.model_helper import ModelHelper
from hypothesis import given, settings
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
import hypothesis.strategies as st
import numpy as np
class RecurrentNetworkTest(serial.SerializedTestCase):
@given(T=st.integers(1, 4),
n=st.integers(1, 5),
d=st.integers(1, 5))
@settings(deadline=10000)
def test_sum_mul(self, T, n, d):
model = ModelHelper(name='external')
input_blob, initial_input_blob = model.net.AddExternalInputs(
'input', 'initial_input')
step = ModelHelper(name='step', param_model=model)
input_t, output_t_prev = step.net.AddExternalInput(
'input_t', 'output_t_prev')
output_t_internal = step.net.Sum([input_t, output_t_prev])
output_t = step.net.Mul([input_t, output_t_internal])
step.net.AddExternalOutput(output_t)
self.simple_rnn(T, n, d, model, step, input_t, output_t, output_t_prev,
input_blob, initial_input_blob)
@given(T=st.integers(1, 4),
n=st.integers(1, 5),
d=st.integers(1, 5))
@settings(deadline=10000)
def test_mul(self, T, n, d):
model = ModelHelper(name='external')
input_blob, initial_input_blob = model.net.AddExternalInputs(
'input', 'initial_input')
step = ModelHelper(name='step', param_model=model)
input_t, output_t_prev = step.net.AddExternalInput(
'input_t', 'output_t_prev')
output_t = step.net.Mul([input_t, output_t_prev])
step.net.AddExternalOutput(output_t)
self.simple_rnn(T, n, d, model, step, input_t, output_t, output_t_prev,
input_blob, initial_input_blob)
@given(T=st.integers(1, 4),
n=st.integers(1, 5),
d=st.integers(1, 5))
def test_extract(self, T, n, d):
model = ModelHelper(name='external')
workspace.ResetWorkspace()
input_blob, initial_input_blob = model.net.AddExternalInputs(
'input', 'initial_input')
step = ModelHelper(name='step', param_model=model)
input_t, output_t_prev = step.net.AddExternalInput(
'input_t', 'output_t_prev')
output_t = step.net.Mul([input_t, output_t_prev])
step.net.AddExternalOutput(output_t)
inputs = np.random.randn(T, n, d).astype(np.float32)
initial_input = np.random.randn(1, n, d).astype(np.float32)
recurrent.recurrent_net(
net=model.net,
cell_net=step.net,
inputs=[(input_t, input_blob)],
initial_cell_inputs=[(output_t_prev, initial_input_blob)],
links={output_t_prev: output_t},
scope="test_rnn_sum_mull",
)
workspace.blobs[input_blob] = inputs
workspace.blobs[initial_input_blob] = initial_input
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net)
prefix = "extractTest"
workspace.RunNet(model.net.Proto().name, T)
retrieved_blobs = recurrent.retrieve_step_blobs(
model.net, prefix
)
# needed for python3.6, which returns bytearrays instead of str
retrieved_blobs = [x.decode() for x in retrieved_blobs]
for i in range(T):
blob_name = prefix + "_" + "input_t" + str(i)
self.assertTrue(
blob_name in retrieved_blobs,
"blob extraction failed on timestep {}\
. \n\n Extracted Blobs: {} \n\n Looking for {}\
.".format(i, retrieved_blobs, blob_name)
)
def simple_rnn(self, T, n, d, model, step, input_t, output_t, output_t_prev,
input_blob, initial_input_blob):
input = np.random.randn(T, n, d).astype(np.float32)
initial_input = np.random.randn(1, n, d).astype(np.float32)
print(locals())
recurrent.recurrent_net(
net=model.net,
cell_net=step.net,
inputs=[(input_t, input_blob)],
initial_cell_inputs=[(output_t_prev, initial_input_blob)],
links={output_t_prev: output_t},
scope="test_rnn_sum_mull",
)
workspace.blobs[input_blob] = input
workspace.blobs[initial_input_blob] = initial_input
op = model.net._net.op[-1]
# Just conviniently store all inputs in an array in the same
# order as op.input
inputs = [workspace.blobs[name] for name in op.input]
def reference(input, initial_input):
global_ws_name = workspace.CurrentWorkspace()
input_all = workspace.blobs[input_blob]
workspace.SwitchWorkspace("ref", create_if_missing=True)
workspace.blobs[input_blob] = input
workspace.blobs[output_t_prev] = initial_input.reshape(n, d)
res_all = np.zeros(shape=input.shape, dtype=np.float32)
for t_cur in range(T):
workspace.blobs[input_t] = input_all[t_cur]
workspace.RunNetOnce(step.net)
result_t = workspace.blobs[output_t]
workspace.blobs[output_t_prev] = result_t
res_all[t_cur] = result_t
workspace.SwitchWorkspace(global_ws_name)
shape = list(input.shape)
shape[0] = 1
return (res_all, res_all[-1].reshape(shape))
self.assertReferenceChecks(
device_option=hu.cpu_do,
op=op,
inputs=inputs,
reference=reference,
output_to_grad=op.output[0],
outputs_to_check=[0, 1],
)
self.assertGradientChecks(
device_option=hu.cpu_do,
op=op,
inputs=inputs,
outputs_to_check=0,
outputs_with_grads=[0],
threshold=0.01,
stepsize=0.005,
)
# Hacky version of 1-D convolution
def _convolution_1d(
self,
model,
inputs,
conv_window,
conv_filter,
conv_bias,
output_name,
left_pad,
):
if left_pad:
padding_width = conv_window - 1
else:
padding_width = 0
# [batch_size, inputs_length, state_size]
inputs_transposed = model.net.Transpose(
inputs,
'inputs_transposed',
axes=[1, 0, 2],
)
# [batch_size, 1, inputs_length, state_size]
inputs_transposed_4d = model.net.ExpandDims(
inputs_transposed,
'inputs_transposed_4d',
dims=[1],
)
# [batch_size, 1, inputs_length - conv_window + 1, state_size]
output_transposed_4d = model.net.Conv(
[inputs_transposed_4d, conv_filter, conv_bias],
output_name + '_transposed_4d',
kernel_h=1,
kernel_w=conv_window,
order='NHWC',
pad_t=0,
pad_l=padding_width,
pad_b=0,
pad_r=0,
)
# [batch_size, inputs_length - conv_window + 1, state_size]
output_transposed = model.net.Squeeze(
output_transposed_4d,
output_name + '_transposed',
dims=[1],
)
# [inputs_length - conv_window + 1, batch_size, state_size]
output = model.net.Transpose(
output_transposed,
output_name,
axes=[1, 0, 2],
)
return output
@given(sequence_length=st.integers(3, 7),
conv_window=st.integers(1, 3),
batch_size=st.integers(1, 5),
state_size=st.integers(1, 5))
def test_stateful_convolution_forward_only(
self,
sequence_length,
conv_window,
batch_size,
state_size,
):
'''
This unit test demonstrates another ways of using RecurrentNetwork.
Imagine, that you want to compute convolution over a sequence,
but sequence elements are not given to you from the beginning,
so you have to loop over the sequence and compute convolution
for each element separately. This situation can occur,
during inference/generation step of the neural networks.
First of all, you have to provide actual input via recurrent states,
since the input of RecurrentNetwork should be known in advance.
Here, we use `fake_inputs` as the input,
and it's used by the op to extract batch size and sequence length.
The actual input sequence is stored in the recurrent state
`input_state`. At every step we generate a new element via input_state_t
(in this example, input_state_t is generated at random, but
in a real situation it can be created using convolution output
from the previous step).
A few important differences from regular RecurrentNetwork usecase:
1. input_state_t_prev is not only a single previous element of
input_state sequence. It is last conv_window elements including (!)
the current one - input_state_t. We specify that using `link_window`
argument of RecurrentNetwork. We need that many elements to
compute a single convolution step. Also, note that `link_window`
specifies how many elements to link starting at
`timestep` + `link_offset` position.
2. First few steps might require additional zero padding from the left,
since there is no enough element of input_state sequence are available.
So the initial_state for input_state contains several elements
(exactly how many pads we need for the first step). Also, because of
that all offseting over input_state sequence is being shifted
by length of initial_input_state: see `link_offset` and `alias_offset`
arguments of RecurrentNetwork.
In this test, we assert that we get the same result
if we apply convolution over all elements simultaneously,
since the whole input_state sequence was generated at the end.
'''
model = ModelHelper(name='model')
fake_inputs = model.param_init_net.UniformFill(
[],
'fake_inputs',
min=-1.0,
max=1.0,
shape=[sequence_length, batch_size, state_size],
)
initial_input_state = model.param_init_net.ConstantFill(
[],
'initial_input_state',
value=0.0,
shape=[conv_window - 1, batch_size, state_size],
)
initial_output_state = model.param_init_net.ConstantFill(
[],
'initial_output_state',
value=0.0,
shape=[1, batch_size, state_size],
)
step_model = ModelHelper(name='step_model', param_model=model)
(
fake_input_t,
timestep,
input_state_t_prev,
) = step_model.net.AddExternalInputs(
'fake_input_t',
'timestep',
'input_state_t_prev',
)
conv_filter = step_model.param_init_net.XavierFill(
[],
'conv_filter',
shape=[state_size, 1, conv_window, state_size],
)
conv_bias = step_model.param_init_net.ConstantFill(
[],
'conv_bias',
shape=[state_size],
value=0.0,
)
step_model.params.extend([conv_filter, conv_bias])
input_state_t = step_model.net.UniformFill(
[],
'input_state_t',
min=-1.0,
max=1.0,
shape=[1, batch_size, state_size],
)
output_state_t = self._convolution_1d(
model=step_model,
inputs=input_state_t_prev,
conv_window=conv_window,
conv_filter=conv_filter,
conv_bias=conv_bias,
output_name='output_state_t',
left_pad=False,
)
initial_recurrent_states = [initial_input_state, initial_output_state]
all_inputs = (
[fake_inputs] + step_model.params + initial_recurrent_states
)
all_outputs = ['input_state_all', 'output_state_all']
recurrent_states = ['input_state', 'output_state']
input_state_all, output_state_all, _ = model.net.RecurrentNetwork(
all_inputs,
all_outputs + ['step_workspaces'],
param=[all_inputs.index(p) for p in step_model.params],
alias_src=recurrent_states,
alias_dst=all_outputs,
alias_offset=[conv_window - 1, 1],
recurrent_states=recurrent_states,
initial_recurrent_state_ids=[
all_inputs.index(s) for s in initial_recurrent_states
],
link_internal=[
str(input_state_t_prev),
str(input_state_t),
str(output_state_t),
],
link_external=['input_state', 'input_state', 'output_state'],
link_offset=[0, conv_window - 1, 1],
link_window=[conv_window, 1, 1],
backward_link_internal=[],
backward_link_external=[],
backward_link_offset=[],
step_net=step_model.net.Proto(),
timestep='timestep' if timestep is None else str(timestep),
outputs_with_grads=[],
)
output_states_2 = self._convolution_1d(
model=model,
inputs=input_state_all,
conv_window=conv_window,
conv_filter=conv_filter,
conv_bias=conv_bias,
output_name='output_states_2',
left_pad=True,
)
workspace.RunNetOnce(model.param_init_net)
workspace.RunNetOnce(model.net)
np.testing.assert_almost_equal(
workspace.FetchBlob(output_state_all),
workspace.FetchBlob(output_states_2),
decimal=3,
)
|