File: reduce_ops_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (449 lines) | stat: -rw-r--r-- 17,341 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449





from caffe2.python import core, workspace
from hypothesis import given, settings

import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
import hypothesis.strategies as st
import numpy as np
import itertools as it


class TestReduceOps(serial.SerializedTestCase):
    def run_reduce_op_test_impl(
            self, op_name, X, axes, keepdims, ref_func, gc, dc, allow_broadcast_fastpath):
        extra_args = dict(allow_broadcast_fastpath=True) if allow_broadcast_fastpath else {}
        if axes is None:
            op = core.CreateOperator(
                op_name,
                ["X"],
                ["Y"],
                keepdims=keepdims,
                **extra_args,
            )
        else:
            op = core.CreateOperator(
                op_name,
                ["X"],
                ["Y"],
                axes=axes,
                keepdims=keepdims,
                **extra_args,
            )

        def ref(X):
            return [ref_func(
                X, axis=None if axes is None else tuple(axes),
                keepdims=keepdims)]

        with self.set_disable_serialized_check(allow_broadcast_fastpath):
            self.assertReferenceChecks(gc, op, [X], ref)
        self.assertDeviceChecks(dc, op, [X], [0])
        self.assertGradientChecks(gc, op, [X], 0, [0])

    def run_reduce_op_test(
            self, op_name, X, keepdims, num_axes, ref_func, gc, dc, allow_broadcast_fastpath=False):
        self.run_reduce_op_test_impl(
            op_name, X, None, keepdims, ref_func, gc, dc, allow_broadcast_fastpath)

        num_dims = len(X.shape)
        if num_dims < num_axes:
            self.run_reduce_op_test_impl(
                op_name, X, range(num_dims), keepdims, ref_func, gc, dc, allow_broadcast_fastpath)
        else:
            for axes in it.combinations(range(num_dims), num_axes):
                self.run_reduce_op_test_impl(
                    op_name, X, axes, keepdims, ref_func, gc, dc, allow_broadcast_fastpath)

    @serial.given(
        X=hu.tensor(max_dim=3, dtype=np.float32),
        keepdims=st.booleans(),
        allow_broadcast_fastpath=st.booleans(),
        num_axes=st.integers(1, 3), **hu.gcs)
    def test_reduce_min(self, X, keepdims, allow_broadcast_fastpath, num_axes, gc, dc):
        X_dims = X.shape
        X_size = X.size
        X = np.arange(X_size, dtype=np.float32)
        np.random.shuffle(X)
        X = X.reshape(X_dims)
        self.run_reduce_op_test(
            "ReduceMin", X, keepdims, num_axes, np.min, gc, dc,
            allow_broadcast_fastpath=allow_broadcast_fastpath)

    @serial.given(
        X=hu.tensor(max_dim=3, dtype=np.float32),
        keepdims=st.booleans(),
        allow_broadcast_fastpath=st.booleans(),
        num_axes=st.integers(1, 3), **hu.gcs)
    def test_reduce_max(self, X, keepdims, allow_broadcast_fastpath, num_axes, gc, dc):
        X_dims = X.shape
        X_size = X.size
        X = np.arange(X_size, dtype=np.float32)
        np.random.shuffle(X)
        X = X.reshape(X_dims)
        self.run_reduce_op_test(
            "ReduceMax", X, keepdims, num_axes, np.max, gc, dc,
            allow_broadcast_fastpath=allow_broadcast_fastpath)

    @given(n=st.integers(0, 5), m=st.integers(0, 5), k=st.integers(0, 5),
           t=st.integers(0, 5), keepdims=st.booleans(),
           allow_broadcast_fastpath=st.booleans(),
           num_axes=st.integers(1, 3), **hu.gcs)
    @settings(deadline=10000)
    def test_reduce_sum(self, n, m, k, t, keepdims, allow_broadcast_fastpath, num_axes, gc, dc):
        X = np.random.randn(n, m, k, t).astype(np.float32)
        self.run_reduce_op_test(
            "ReduceSum", X, keepdims, num_axes, np.sum, gc, dc,
            allow_broadcast_fastpath=allow_broadcast_fastpath)

    @serial.given(X=hu.tensor(dtype=np.float32), keepdims=st.booleans(),
                  allow_broadcast_fastpath=st.booleans(),
                  num_axes=st.integers(1, 4), **hu.gcs)
    def test_reduce_mean(self, X, keepdims, allow_broadcast_fastpath, num_axes, gc, dc):
        self.run_reduce_op_test(
            "ReduceMean", X, keepdims, num_axes, np.mean, gc, dc,
            allow_broadcast_fastpath=allow_broadcast_fastpath)

    @given(n=st.integers(1, 3), m=st.integers(1, 3), k=st.integers(1, 3),
           keepdims=st.booleans(), allow_broadcast_fastpath=st.booleans(),
           num_axes=st.integers(1, 3), **hu.gcs_cpu_only)
    @settings(deadline=10000)
    def test_reduce_l1(self, n, m, k, keepdims, allow_broadcast_fastpath, num_axes, gc, dc):
        X = np.arange(n * m * k, dtype=np.float32) - 0.5
        np.random.shuffle(X)
        X = X.reshape((m, n, k))
        self.run_reduce_op_test(
            "ReduceL1", X, keepdims, num_axes, getNorm(1), gc, dc,
            allow_broadcast_fastpath=allow_broadcast_fastpath)

    @serial.given(n=st.integers(1, 5), m=st.integers(1, 5), k=st.integers(1, 5),
                  keepdims=st.booleans(), allow_broadcast_fastpath=st.booleans(),
                  num_axes=st.integers(1, 3), **hu.gcs_cpu_only)
    def test_reduce_l2(self, n, m, k, keepdims, allow_broadcast_fastpath, num_axes, gc, dc):
        X = np.random.randn(n, m, k).astype(np.float32)
        self.run_reduce_op_test(
            "ReduceL2", X, keepdims, num_axes, getNorm(2), gc, dc,
            allow_broadcast_fastpath=allow_broadcast_fastpath)


def getNorm(p):
    if p == 1:
        def norm(X, axis, keepdims):
            return np.sum(np.abs(X), axis=axis, keepdims=keepdims)
    elif p == 2:
        def norm(X, axis, keepdims):
            return np.sqrt(np.sum(np.power(X, 2), axis=axis, keepdims=keepdims))
    else:
        raise RuntimeError("Only L1 and L2 norms supported")
    return norm


class TestReduceFrontReductions(serial.SerializedTestCase):
    def grad_variant_input_test(self, grad_op_name, X, ref, num_reduce_dim):
        workspace.ResetWorkspace()

        Y = np.array(ref(X)[0]).astype(np.float32)
        dY = np.array(np.random.rand(*Y.shape)).astype(np.float32)
        shape = np.array(X.shape).astype(np.int64)

        workspace.FeedBlob("X", X)
        workspace.FeedBlob("dY", dY)
        workspace.FeedBlob("shape", shape)

        grad_op = core.CreateOperator(
            grad_op_name, ["dY", "X"], ["dX"], num_reduce_dim=num_reduce_dim)

        grad_op1 = core.CreateOperator(
            grad_op_name, ["dY", "shape"], ["dX1"],
            num_reduce_dim=num_reduce_dim)

        workspace.RunOperatorOnce(grad_op)
        workspace.RunOperatorOnce(grad_op1)

        dX = workspace.FetchBlob("dX")
        dX1 = workspace.FetchBlob("dX1")
        np.testing.assert_array_equal(dX, dX1)

    def max_op_test(
            self, op_name, num_reduce_dim, gc, dc, in_data, in_names, ref_max):

        op = core.CreateOperator(
            op_name,
            in_names,
            ["outputs"],
            num_reduce_dim=num_reduce_dim
        )

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=in_data,
            reference=ref_max,
        )

        # Skip gradient check because it is too unreliable with max.
        # Just check CPU and CUDA have same results
        Y = np.array(ref_max(*in_data)[0]).astype(np.float32)
        dY = np.array(np.random.rand(*Y.shape)).astype(np.float32)
        if len(in_data) == 2:
            grad_in_names = ["dY", in_names[0], "Y", in_names[1]]
            grad_in_data = [dY, in_data[0], Y, in_data[1]]
        else:
            grad_in_names = ["dY", in_names[0], "Y"]
            grad_in_data = [dY, in_data[0], Y]

        grad_op = core.CreateOperator(
            op_name + "Gradient",
            grad_in_names,
            ["dX"],
            num_reduce_dim=num_reduce_dim
        )
        self.assertDeviceChecks(dc, grad_op, grad_in_data, [0])

    def reduce_op_test(self, op_name, op_ref, in_data, in_names,
                       num_reduce_dims, device):
        op = core.CreateOperator(
            op_name,
            in_names,
            ["outputs"],
            num_reduce_dim=num_reduce_dims
        )

        self.assertReferenceChecks(
            device_option=device,
            op=op,
            inputs=in_data,
            reference=op_ref
        )

        self.assertGradientChecks(
            device, op, in_data, 0, [0], stepsize=1e-2, threshold=1e-2)

    @given(num_reduce_dim=st.integers(0, 4), **hu.gcs)
    @settings(deadline=10000)
    def test_reduce_front_sum(self, num_reduce_dim, gc, dc):
        X = np.random.rand(7, 4, 3, 5).astype(np.float32)

        def ref_sum(X):
            return [np.sum(X, axis=(tuple(range(num_reduce_dim))))]

        self.reduce_op_test(
            "ReduceFrontSum", ref_sum, [X], ["input"], num_reduce_dim, gc)
        self.grad_variant_input_test(
            "ReduceFrontSumGradient", X, ref_sum, num_reduce_dim)

    @given(num_reduce_dim=st.integers(0, 4), seed=st.integers(0, 4), **hu.gcs)
    def test_reduce_front_sum_empty_batch(self, num_reduce_dim, seed, gc, dc):
        np.random.seed(seed)
        X = np.random.rand(0, 4, 3, 5).astype(np.float32)

        def ref_sum(X):
            return [np.sum(X, axis=(tuple(range(num_reduce_dim))))]

        self.reduce_op_test(
            "ReduceFrontSum", ref_sum, [X], ["input"], num_reduce_dim, gc)
        self.grad_variant_input_test(
            "ReduceFrontSumGradient", X, ref_sum, num_reduce_dim)

        # test the second iteration
        not_empty_X = np.random.rand(2, 4, 3, 5).astype(np.float32)
        net = core.Net('test')
        with core.DeviceScope(gc):
            net.ReduceFrontSum(
                ['X'], ['output'],
                num_reduce_dim=num_reduce_dim
            )
            workspace.CreateNet(net)

            workspace.FeedBlob('X', not_empty_X)
            workspace.RunNet(workspace.GetNetName(net))
            output = workspace.FetchBlob('output')
            np.testing.assert_allclose(
                output, ref_sum(not_empty_X)[0], atol=1e-3)

            workspace.FeedBlob('X', X)
            workspace.RunNet(workspace.GetNetName(net))
            output = workspace.FetchBlob('output')
            np.testing.assert_allclose(output, ref_sum(X)[0], atol=1e-3)

    @given(**hu.gcs)
    @settings(deadline=None)
    def test_reduce_front_sum_with_length(self, dc, gc):
        num_reduce_dim = 1
        X = np.random.rand(2, 3, 4, 5).astype(np.float32)
        batch_size = int(np.prod([2, 3, 4, 5][num_reduce_dim:]))
        d = 120 // batch_size
        lengths = np.random.randint(1, d, size=batch_size).astype(np.int32)

        def ref_sum(X, lengths):
            Y = X.reshape(d, lengths.size)
            rv = np.zeros((lengths.size, 1)).astype(np.float32)
            for ii in range(lengths.size):
                rv[ii] = np.sum(Y[:lengths[ii], ii])
            return [rv.reshape((2, 3, 4, 5)[num_reduce_dim:])]

        self.reduce_op_test(
            "ReduceFrontSum", ref_sum, [X, lengths], ["input", "lengths"],
            num_reduce_dim, gc)

    @given(num_reduce_dim=st.integers(0, 4), **hu.gcs)
    @settings(deadline=10000)
    def test_reduce_front_mean(self, num_reduce_dim, gc, dc):
        X = np.random.rand(6, 7, 8, 2).astype(np.float32)

        def ref_mean(X):
            return [np.mean(X, axis=(tuple(range(num_reduce_dim))))]

        self.reduce_op_test(
            "ReduceFrontMean", ref_mean, [X], ["input"], num_reduce_dim, gc)
        self.grad_variant_input_test(
            "ReduceFrontMeanGradient", X, ref_mean, num_reduce_dim)

    @given(**hu.gcs)
    @settings(deadline=10000)
    def test_reduce_front_mean_with_length(self, dc, gc):
        num_reduce_dim = 1
        X = np.random.rand(2, 3, 4, 5).astype(np.float32)
        batch_size = int(np.prod([2, 3, 4, 5][num_reduce_dim:]))
        d = 120 // batch_size
        lengths = np.random.randint(1, d, size=batch_size).astype(np.int32)

        def ref_mean(X, lengths):
            Y = X.reshape(d, lengths.size)
            rv = np.zeros((lengths.size, 1)).astype(np.float32)
            for ii in range(lengths.size):
                rv[ii] = np.mean(Y[:lengths[ii], ii])
            return [rv.reshape((2, 3, 4, 5)[num_reduce_dim:])]

        self.reduce_op_test(
            "ReduceFrontMean", ref_mean, [X, lengths], ["input", "lengths"],
            num_reduce_dim, gc)

    @serial.given(num_reduce_dim=st.integers(0, 4), **hu.gcs)
    def test_reduce_front_max(self, num_reduce_dim, gc, dc):
        X = np.random.rand(6, 7, 8, 2).astype(np.float32)

        def ref_frontmax(X):
            return [np.max(X, axis=(tuple(range(num_reduce_dim))))]

        self.max_op_test(
            "ReduceFrontMax", num_reduce_dim, gc, dc, [X], ["X"], ref_frontmax)

    @given(**hu.gcs)
    def test_reduce_front_max_with_length(self, dc, gc):
        num_reduce_dim = 1
        X = np.random.rand(2, 3, 4, 5).astype(np.float32)
        batch_size = int(np.prod([2, 3, 4, 5][num_reduce_dim:]))
        d = 120 // batch_size
        lengths = np.random.randint(1, d, size=batch_size).astype(np.int32)

        def ref_max(X, lengths):
            Y = X.reshape(d, lengths.size)
            rv = np.zeros((lengths.size, 1)).astype(np.float32)
            for ii in range(lengths.size):
                rv[ii] = np.max(Y[:lengths[ii], ii])
            return [rv.reshape((2, 3, 4, 5)[num_reduce_dim:])]

        self.max_op_test(
            "ReduceFrontMax", num_reduce_dim, gc, dc, [X, lengths],
            ["X", "lengths"], ref_max)

    @serial.given(num_reduce_dim=st.integers(0, 4), **hu.gcs)
    def test_reduce_back_max(self, num_reduce_dim, gc, dc):
        X = np.random.rand(6, 7, 8, 2).astype(np.float32)

        def ref_backmax(X):
            return [np.max(X, axis=(0, 1, 2, 3)[4 - num_reduce_dim:])]

        self.max_op_test(
            "ReduceBackMax", num_reduce_dim, gc, dc, [X], ["X"], ref_backmax)

    @given(**hu.gcs)
    def test_reduce_back_max_with_length(self, gc, dc):
        num_reduce_dim = 1
        X = np.random.rand(2, 3, 4, 5).astype(np.float32)
        batch_size = int(np.prod([2, 3, 4, 5][:4 - num_reduce_dim]))
        d = 120 // batch_size
        lengths = np.random.randint(1, d, size=batch_size).astype(np.int32)

        def ref_max(X, lengths):
            Y = X.reshape(lengths.size, d)
            rv = np.zeros((lengths.size, 1)).astype(np.float32)
            for ii in range(lengths.size):
                rv[ii] = np.max(Y[ii, :lengths[ii]])
            return [rv.reshape((2, 3, 4, 5)[:4 - num_reduce_dim])]

        self.max_op_test(
            "ReduceBackMax", num_reduce_dim, gc, dc, [X, lengths],
            ["X", "lengths"], ref_max)

    @given(**hu.gcs)
    @settings(deadline=10000)
    def test_reduce_back_sum(self, dc, gc):
        num_reduce_dim = 1
        X = np.random.rand(6, 7, 8, 2).astype(np.float32)

        def ref_sum(X):
            return [np.sum(X, axis=(0, 1, 2, 3)[4 - num_reduce_dim:])]

        self.reduce_op_test(
            "ReduceBackSum", ref_sum, [X], ["input"], num_reduce_dim, gc)
        self.grad_variant_input_test(
            "ReduceBackSumGradient", X, ref_sum, num_reduce_dim)

    @given(**hu.gcs)
    @settings(deadline=10000)
    def test_reduce_back_sum_with_length(self, dc, gc):
        num_reduce_dim = 1
        X = np.random.rand(2, 3, 4, 5).astype(np.float32)
        batch_size = int(np.prod([2, 3, 4, 5][:4 - num_reduce_dim]))
        d = 120 // batch_size
        lengths = np.random.randint(1, d, size=batch_size).astype(np.int32)

        def ref_sum(X, lengths):
            Y = X.reshape(lengths.size, d)
            rv = np.zeros((lengths.size, 1)).astype(np.float32)
            for ii in range(lengths.size):
                rv[ii] = np.sum(Y[ii, :lengths[ii]])
            return [rv.reshape((2, 3, 4, 5)[:4 - num_reduce_dim])]

        self.reduce_op_test(
            "ReduceBackSum", ref_sum, [X, lengths], ["input", "lengths"],
            num_reduce_dim, gc)

    @given(num_reduce_dim=st.integers(0, 4), **hu.gcs)
    @settings(deadline=10000)
    def test_reduce_back_mean(self, num_reduce_dim, dc, gc):
        X = np.random.rand(6, 7, 8, 2).astype(np.float32)

        def ref_mean(X):
            return [np.mean(X, axis=(0, 1, 2, 3)[4 - num_reduce_dim:])]

        self.reduce_op_test(
            "ReduceBackMean", ref_mean, [X], ["input"], num_reduce_dim, gc)
        self.grad_variant_input_test(
            "ReduceBackMeanGradient", X, ref_mean, num_reduce_dim)

    @given(**hu.gcs)
    @settings(deadline=None)
    def test_reduce_back_mean_with_length(self, dc, gc):
        num_reduce_dim = 1
        X = np.random.rand(2, 3, 4, 5).astype(np.float32)
        batch_size = int(np.prod([2, 3, 4, 5][:4 - num_reduce_dim]))
        d = 120 // batch_size
        lengths = np.random.randint(1, d, size=batch_size).astype(np.int32)

        def ref_mean(X, lengths):
            Y = X.reshape(lengths.size, d)
            rv = np.zeros((lengths.size, 1)).astype(np.float32)
            for ii in range(lengths.size):
                rv[ii] = np.mean(Y[ii, :lengths[ii]])
            return [rv.reshape((2, 3, 4, 5)[:4 - num_reduce_dim])]

        self.reduce_op_test(
            "ReduceBackMean", ref_mean, [X, lengths], ["input", "lengths"],
            num_reduce_dim, gc)