File: reduction_ops_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (180 lines) | stat: -rw-r--r-- 4,664 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180





from caffe2.python import core, workspace
from hypothesis import assume, given, settings
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
import hypothesis.strategies as st
import numpy as np


class TestReductionOps(serial.SerializedTestCase):

    @serial.given(n=st.integers(5, 8), **hu.gcs)
    def test_elementwise_sum(self, n, gc, dc):
        X = np.random.rand(n).astype(np.float32)

        def sum_op(X):
            return [np.sum(X)]

        op = core.CreateOperator(
            "SumElements",
            ["X"],
            ["y"]
        )

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[X],
            reference=sum_op,
        )

        self.assertGradientChecks(
            device_option=gc,
            op=op,
            inputs=[X],
            outputs_to_check=0,
            outputs_with_grads=[0],
        )

    @given(n=st.integers(5, 8), **hu.gcs)
    @settings(deadline=10000)
    def test_elementwise_int_sum(self, n, gc, dc):
        X = np.random.rand(n).astype(np.int32)

        def sum_op(X):
            return [np.sum(X)]

        op = core.CreateOperator(
            "SumElementsInt",
            ["X"],
            ["y"]
        )

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[X],
            reference=sum_op,
        )

    @given(n=st.integers(1, 65536),
           dtype=st.sampled_from([np.float32, np.float16]),
           **hu.gcs)
    @settings(deadline=10000)
    def test_elementwise_sqrsum(self, n, dtype, gc, dc):
        if dtype == np.float16:
            # fp16 is only supported with CUDA/HIP
            assume(gc.device_type == workspace.GpuDeviceType)
            dc = [d for d in dc if d.device_type == workspace.GpuDeviceType]

        X = np.random.rand(n).astype(dtype)

        def sumsqr_op(X):
            return [np.sum(X * X)]

        op = core.CreateOperator(
            "SumSqrElements",
            ["X"],
            ["y"]
        )

        threshold = 0.01 if dtype == np.float16 else 0.005

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[X],
            reference=sumsqr_op,
            threshold=threshold,
        )

    @given(n=st.integers(5, 8), **hu.gcs)
    def test_elementwise_avg(self, n, gc, dc):
        X = np.random.rand(n).astype(np.float32)

        def avg_op(X):
            return [np.mean(X)]

        op = core.CreateOperator(
            "SumElements",
            ["X"],
            ["y"],
            average=1
        )

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[X],
            reference=avg_op,
        )

        self.assertGradientChecks(
            device_option=gc,
            op=op,
            inputs=[X],
            outputs_to_check=0,
            outputs_with_grads=[0],
        )

    @serial.given(batch_size=st.integers(1, 3),
           m=st.integers(1, 3),
           n=st.integers(1, 4),
           **hu.gcs)
    def test_rowwise_max(self, batch_size, m, n, gc, dc):
        X = np.random.rand(batch_size, m, n).astype(np.float32)

        def rowwise_max(X):
            return [np.max(X, axis=2)]

        op = core.CreateOperator(
            "RowwiseMax",
            ["x"],
            ["y"]
        )

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[X],
            reference=rowwise_max,
        )

    @serial.given(batch_size=st.integers(1, 3),
           m=st.integers(1, 3),
           n=st.integers(1, 4),
           **hu.gcs)
    def test_columnwise_max(self, batch_size, m, n, gc, dc):
        X = np.random.rand(batch_size, m, n).astype(np.float32)

        def columnwise_max(X):
            return [np.max(X, axis=1)]

        op = core.CreateOperator(
            "ColwiseMax",
            ["x"],
            ["y"]
        )

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[X],
            reference=columnwise_max,
        )

        # Test shape inference logic
        net = core.Net("test_shape_inference")
        workspace.FeedBlob("x", X)
        output = net.ColwiseMax(["x"], ["y"])
        (shapes, types) = workspace.InferShapesAndTypes([net])
        workspace.RunNetOnce(net)

        self.assertEqual(shapes[output], list(workspace.blobs[output].shape))
        self.assertEqual(shapes[output], [X.shape[0]] + [X.shape[2]])
        self.assertEqual(types[output], core.DataType.FLOAT)