File: roi_align_rotated_op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (210 lines) | stat: -rw-r--r-- 7,567 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210





from caffe2.python import core, workspace
from hypothesis import given
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
import copy


class RoIAlignRotatedOp(hu.HypothesisTestCase):
    def bbox_xywh_to_xyxy(self, boxes):
        """
        Convert from [center_x center_y w h] format to [x1 y1 x2 y2].
        """
        w, h = boxes[:, 2], boxes[:, 3]
        boxes[:, 0] -= w / 2.0  # x1 = center_x - width/2
        boxes[:, 1] -= h / 2.0  # y1 = center_y - height/2
        boxes[:, 2] = boxes[:, 0] + w  # x2 = x1 + width
        boxes[:, 3] = boxes[:, 1] + h  # y2 = y1 + height
        return boxes

    @given(
        H=st.integers(min_value=50, max_value=100),
        W=st.integers(min_value=50, max_value=100),
        C=st.integers(min_value=1, max_value=3),
        num_rois=st.integers(min_value=0, max_value=10),
        pooled_size=st.sampled_from([7, 14]),
        **hu.gcs
    )
    def test_horizontal_rois(self, H, W, C, num_rois, pooled_size, gc, dc):
        """
        Test that results match with RoIAlign when angle=0.
        """
        X = np.random.randn(1, C, H, W).astype(np.float32)
        R = np.zeros((num_rois, 6)).astype(np.float32)
        angle = 0.0
        for i in range(num_rois):
            x = np.random.uniform(1, W - 1)
            y = np.random.uniform(1, H - 1)
            w = np.random.uniform(1, min(x, W - x))
            h = np.random.uniform(1, min(y, H - y))
            R[i] = [0, x, y, w, h, angle]

        op = core.CreateOperator(
            "RoIAlignRotated",
            ["X", "R"],
            ["Y"],
            pooled_h=pooled_size,
            pooled_w=pooled_size,
            sampling_ratio=0,
        )

        def roialign_ref(X, R):
            # Remove angle and convert from [center_x center_y w h]
            # to [x1 y1 x2 y2] format.
            R_ref = copy.deepcopy(R[:, 0:5])
            R_ref[:, 1:5] = self.bbox_xywh_to_xyxy(R_ref[:, 1:5])

            ref_op = core.CreateOperator(
                "RoIAlign",
                ["X_ref", "R_ref"],
                ["Y_ref"],
                pooled_h=pooled_size,
                pooled_w=pooled_size,
                sampling_ratio=0,
            )
            workspace.FeedBlob("X_ref", X)
            workspace.FeedBlob("R_ref", R_ref)
            workspace.RunOperatorOnce(ref_op)
            return [workspace.FetchBlob("Y_ref")]

        self.assertReferenceChecks(
            device_option=gc, op=op, inputs=[X, R], reference=roialign_ref
        )
        if core.IsGPUDeviceType(gc.device_type):
            self.assertGradientChecks(gc, op, [X, R], 0, [0])

    @given(
        H=st.integers(min_value=50, max_value=100),
        W=st.integers(min_value=50, max_value=100),
        C=st.integers(min_value=1, max_value=3),
        num_rois=st.integers(min_value=0, max_value=10),
        pooled_size=st.sampled_from([7, 14]),
        angle=st.sampled_from([-270, -180, -90, 90, 180, 270]),
        **hu.gcs
    )
    def test_simple_rotations(
        self, H, W, C, num_rois, pooled_size, angle, gc, dc
    ):
        """
        Test with right-angled rotations that don't need interpolation.
        """
        X = np.random.randn(1, C, H, W).astype(np.float32)
        R = np.zeros((num_rois, 6)).astype(np.float32)
        for i in range(num_rois):
            x = np.random.uniform(1, W - 1)
            y = np.random.uniform(1, H - 1)
            w = np.random.uniform(1, min(x, W - x, y, H - y))
            h = np.random.uniform(1, min(x, W - x, y, H - y))
            R[i] = [0, x, y, w, h, angle]

        op = core.CreateOperator(
            "RoIAlignRotated",
            ["X", "R"],
            ["Y"],
            pooled_h=pooled_size,
            pooled_w=pooled_size,
            sampling_ratio=0,
        )

        def roialign_rot90(m, k=1, axes=(0,1)):
            axes = tuple(axes)
            if len(axes) != 2:
                raise ValueError("len(axes) must be 2.")

            m = np.asanyarray(m)

            if axes[0] == axes[1] or np.absolute(axes[0] - axes[1]) == m.ndim:
                raise ValueError("Axes must be different.")

            if (axes[0] >= m.ndim or axes[0] < -m.ndim or
                    axes[1] >= m.ndim or axes[1] < -m.ndim):
                raise ValueError(
                    "Axes={} out of range for array of ndim={}.".format(axes, m.ndim))

            k %= 4

            if k == 0:
                return m[:]
            if k == 2:
                return roialign_flip(roialign_flip(m, axes[0]), axes[1])

            axes_list = np.arange(0, m.ndim)
            (axes_list[axes[0]], axes_list[axes[1]]) = (axes_list[axes[1]],
                                                        axes_list[axes[0]])

            if k == 1:
                return np.transpose(roialign_flip(m,axes[1]), axes_list)
            else:
                # k == 3
                return roialign_flip(np.transpose(m, axes_list), axes[1])

        def roialign_flip(m, axis):
            if not hasattr(m, 'ndim'):
                m = np.asarray(m)
            indexer = [slice(None)] * m.ndim
            try:
                indexer[axis] = slice(None, None, -1)
            except IndexError:
                raise ValueError("axis=%i is invalid for the %i-dimensional input array"
                                 % (axis, m.ndim))
            return m[tuple(indexer)]

        def roialign_ref(X, R):
            # `angle` denotes counter-clockwise rotation. Rotate the input
            # feature map in the opposite (clockwise) direction and perform
            # standard RoIAlign. We assume all RoIs have the same angle.
            #
            # Also note that we need to have our own version of np.rot90,
            # since axes isn't an argument until 1.12.0 and doesn't exist
            # on all tested platforms.
            norm_angle = (angle + 360) % 360
            X_ref = roialign_rot90(X, k=-norm_angle / 90, axes=(2, 3))

            # Rotate RoIs clockwise wrt the center of the input feature
            # map to make them horizontal and convert from
            # [center_x center_y w h] to [x1 y1 x2 y2] format.
            roi_x, roi_y = R[:, 1], R[:, 2]
            if norm_angle == 90:
                new_roi_x = H - roi_y - 1
                new_roi_y = roi_x
            elif norm_angle == 180:
                new_roi_x = W - roi_x - 1
                new_roi_y = H - roi_y - 1
            elif norm_angle == 270:
                new_roi_x = roi_y
                new_roi_y = W - roi_x - 1
            else:
                raise NotImplementedError
            R_ref = copy.deepcopy(R[:, 0:5])
            R_ref[:, 1], R_ref[:, 2] = new_roi_x, new_roi_y
            R_ref[:, 1:5] = self.bbox_xywh_to_xyxy(R_ref[:, 1:5])

            ref_op = core.CreateOperator(
                "RoIAlign",
                ["X_ref", "R_ref"],
                ["Y_ref"],
                pooled_h=pooled_size,
                pooled_w=pooled_size,
                sampling_ratio=0,
            )
            workspace.FeedBlob("X_ref", X_ref)
            workspace.FeedBlob("R_ref", R_ref)
            workspace.RunOperatorOnce(ref_op)
            return [workspace.FetchBlob("Y_ref")]

        self.assertReferenceChecks(
            device_option=gc, op=op, inputs=[X, R], reference=roialign_ref
        )
        if core.IsGPUDeviceType(gc.device_type):
            self.assertGradientChecks(gc, op, [X, R], 0, [0])


if __name__ == '__main__':
    import unittest
    unittest.main()