1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
import unittest
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, workspace
from hypothesis import given, settings
class TestSelfBinningHistogramBase(object):
def __init__(self, bin_spacing, dtype, abs=False):
self.bin_spacing = bin_spacing
self.dtype = dtype
self.abs = abs
def _check_histogram(self, arrays, num_bins, expected_values=None, expected_counts=None):
# Check that sizes match and counts add up.
values = workspace.FetchBlob("histogram_values")
counts = workspace.FetchBlob("histogram_counts")
self.assertTrue(np.size(values) == num_bins)
self.assertTrue(np.size(counts) == num_bins)
self.assertTrue(np.sum(counts) == sum([np.size(array) for array in arrays]))
# Check counts
if expected_counts is None:
# Check that counts are correct for the returned values if expected_counts is not given.
expected_counts = np.zeros(num_bins, dtype='i')
for array in arrays:
for input_val in array:
input_val = abs(input_val) if self.abs else input_val
found = False
for pos in range(np.size(values)):
if values[pos] > input_val:
found = True
break
self.assertTrue(found, f"input value must fit inside values array: "
f"input={input_val}, last_value={values[-1]}")
if self.bin_spacing == "linear":
self.assertTrue(pos > 0,
f"input should not be smaller than the first bin value: "
f"input={input_val}, 1st bin value={values[pos]}")
if pos == 0:
self.assertEqual(self.bin_spacing, "logarithmic")
expected_counts[pos] += 1
else:
expected_counts[pos - 1] += 1
self.assertTrue(np.array_equal(expected_counts, counts), f"expected:{expected_counts}\ncounts:{counts}")
# Check values
if expected_values is not None:
self.assertTrue(np.allclose(expected_values, values, rtol=1e-02, atol=1e-05),
f"expected:{expected_values}\nvalues:{values}")
# Ideally, the output values are sorted in a non-decreasing order.
for idx in range(len(values) - 1):
self.assertTrue(values[idx] <= values[idx + 1])
if self.abs:
self.assertTrue(values[0] >= 0)
def _run_single_op_net(self, arrays, num_bins, logspacing_start=None):
for i in range(len(arrays)):
workspace.FeedBlob(
"X{}".format(i), arrays[i]
)
net = core.Net("test_net")
if logspacing_start is not None:
net.SelfBinningHistogram(
["X{}".format(i) for i in range(len(arrays))],
["histogram_values", "histogram_counts"],
num_bins=num_bins,
bin_spacing=self.bin_spacing,
logspacing_start=logspacing_start,
abs=self.abs
)
else:
net.SelfBinningHistogram(
["X{}".format(i) for i in range(len(arrays))],
["histogram_values", "histogram_counts"],
num_bins=num_bins,
bin_spacing=self.bin_spacing,
abs=self.abs
)
workspace.RunNetOnce(net)
@given(rows=st.integers(1, 1000), cols=st.integers(1, 1000), **hu.gcs_cpu_only)
@settings(deadline=10000)
def test_histogram_device_consistency(self, rows, cols, gc, dc):
X = np.random.rand(rows, cols)
op = core.CreateOperator(
"SelfBinningHistogram",
["X"],
["histogram_values", "histogram_counts"],
num_bins=1000,
bin_spacing=self.bin_spacing,
)
self.assertDeviceChecks(dc, op, [X], [0])
def test_histogram_bin_to_fewer(self):
X = np.array([-2.0, -2.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 6.0, 9.0], dtype=self.dtype)
if self.bin_spacing == 'linear':
if not self.abs:
expected_values = [-2., 0.2, 2.4, 4.6, 6.8, 9.]
expected_counts = [5, 2, 2, 1, 1, 0]
else:
expected_values = [0., 1.8, 3.6, 5.4, 7.2, 9.]
expected_counts = [4, 4, 1, 1, 1, 0]
else:
expected_values = [1.e-24, 9.8e-20, 9.6e-15, 9.4e-10, 9.2e-05, 9.]
if not self.abs:
expected_counts = [5, 0, 0, 0, 6, 0]
else:
expected_counts = [3, 0, 0, 0, 8, 0]
self._run_single_op_net([X], 5)
self._check_histogram(
[X],
6,
expected_values=expected_values,
expected_counts=expected_counts
)
def test_histogram_bin_to_more(self):
X = np.array([-2.0, -2.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 6.0, 9.0], dtype=self.dtype)
self._run_single_op_net([X], 100)
self._check_histogram(
[X],
101,
)
def test_histogram_bin_to_two(self):
"""This test roughly tests [min,max+EPSILON] and [N,0]"""
X = np.array([-2.0, -2.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 6.0, 9.0], dtype=self.dtype)
if self.bin_spacing == 'linear':
if not self.abs:
expected_values = [-2., 9.]
else:
expected_values = [0., 9.]
else:
expected_values = [1.e-24, 9.]
expected_counts = [11, 0]
self._run_single_op_net([X], 1)
self._check_histogram(
[X],
2,
expected_values=expected_values,
expected_counts=expected_counts
)
def test_histogram_min_max_equal(self):
"""This test uses exact value match, so is only relevant for float type."""
X = np.array([0., 0., 0., 0., 0.], dtype='f')
logspacing_start = np.float(1e-24)
self._run_single_op_net([X], 3, logspacing_start)
if self.bin_spacing == "linear":
self._check_histogram(
[X],
4,
expected_values=np.array([0., 0., 0., 0.], dtype='f'),
expected_counts=[5, 0, 0, 0]
)
else:
self.assertEqual(self.bin_spacing, "logarithmic")
self._check_histogram(
[X],
4,
expected_values=np.array([logspacing_start] * 4, dtype='f'),
expected_counts=[5, 0, 0, 0],
)
def test_histogram_min_max_equal_nonzero(self):
X = np.array([1., 1., 1., 1., 1.], dtype=self.dtype)
logspacing_start = 1e-24
self._run_single_op_net([X], 3, logspacing_start)
self._check_histogram(
[X],
4,
expected_values=[1., 1., 1., 1.],
expected_counts=[5, 0, 0, 0]
)
def test_histogram_empty_input_tensor(self):
X = np.array([], dtype=self.dtype)
self._run_single_op_net([X], 1)
self._check_histogram(
[X],
2,
expected_values=[0., 0.],
expected_counts=[0, 0]
)
self._run_single_op_net([X], 10)
self._check_histogram(
[X],
11,
expected_values=[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
expected_counts=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
)
def test_histogram_multi_input(self):
X1 = np.array([-2.0, -2.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 6.0, 9.0], dtype=self.dtype)
X2 = np.array([-5.0, -3.0, 7, 7, 0.0, 1.0, 2.0, -3.0, 4.0, 6.0, 9.0], dtype=self.dtype)
if self.bin_spacing == 'linear':
if not self.abs:
expected_values = [-5., -2.2, 0.6, 3.4, 6.2, 9.]
expected_counts = [3, 6, 5, 4, 4, 0]
else:
expected_values = [0., 1.8, 3.6, 5.4, 7.2, 9.]
expected_counts = [6, 7, 3, 4, 2, 0]
else:
expected_values = [1.e-24, 9.8e-20, 9.6e-15, 9.4e-10, 9.2e-05, 9.]
if not self.abs:
expected_counts = [9, 0, 0, 0, 13, 0]
else:
expected_counts = [4, 0, 0, 0, 18, 0]
self._run_single_op_net([X1, X2], 5)
self._check_histogram(
[X1, X2],
6,
expected_values=expected_values,
expected_counts=expected_counts
)
def test_histogram_very_small_range_for_stride_underflow(self):
"""Tests a large number of bins for a very small range of values.
This test uses float type. 1-e302 is very small, and with 1M bins, it
causes numeric underflow. This test is to show that this is handled.
Note: this test was flaky due to how compiler and OS handls floats.
Previously, 1-e38 does not induce overflow and cuases test error for some
combinations of compiler and OS. Now 1-e302 should be small enough.
"""
X = np.array([0, 1e-302], dtype='f')
large_bin_number = 1000000
self._run_single_op_net([X], large_bin_number)
self._check_histogram(
[X],
large_bin_number + 1,
expected_counts=[2] + [0] * large_bin_number # [2, 0, 0, ..., 0]
)
def test_histogram_insufficient_bins(self):
with self.assertRaisesRegex(
RuntimeError, "Number of bins must be greater than or equal to 1."
):
self._run_single_op_net([np.random.rand(111)], 0)
class TestSelfBinningHistogramLinear(TestSelfBinningHistogramBase, hu.HypothesisTestCase):
def __init__(self, *args, **kwargs):
TestSelfBinningHistogramBase.__init__(self, bin_spacing="linear", dtype='d')
hu.HypothesisTestCase.__init__(self, *args, **kwargs)
class TestSelfBinningHistogramLogarithmic(TestSelfBinningHistogramBase, hu.HypothesisTestCase):
def __init__(self, *args, **kwargs):
TestSelfBinningHistogramBase.__init__(self, bin_spacing="logarithmic", dtype='d')
hu.HypothesisTestCase.__init__(self, *args, **kwargs)
class TestSelfBinningHistogramLinearFloat(TestSelfBinningHistogramBase, hu.HypothesisTestCase):
def __init__(self, *args, **kwargs):
TestSelfBinningHistogramBase.__init__(self, bin_spacing="linear", dtype='f')
hu.HypothesisTestCase.__init__(self, *args, **kwargs)
class TestSelfBinningHistogramLogarithmicFloat(TestSelfBinningHistogramBase, hu.HypothesisTestCase):
def __init__(self, *args, **kwargs):
TestSelfBinningHistogramBase.__init__(self, bin_spacing="logarithmic", dtype='f')
hu.HypothesisTestCase.__init__(self, *args, **kwargs)
class TestSelfBinningHistogramLinearWithAbs(TestSelfBinningHistogramBase, hu.HypothesisTestCase):
def __init__(self, *args, **kwargs):
TestSelfBinningHistogramBase.__init__(self, bin_spacing="linear", dtype='d', abs=True)
hu.HypothesisTestCase.__init__(self, *args, **kwargs)
class TestSelfBinningHistogramLogarithmicWithAbs(TestSelfBinningHistogramBase, hu.HypothesisTestCase):
def __init__(self, *args, **kwargs):
TestSelfBinningHistogramBase.__init__(self, bin_spacing="logarithmic", dtype='d', abs=True)
hu.HypothesisTestCase.__init__(self, *args, **kwargs)
class TestSelfBinningHistogramLinearFloatWithAbs(TestSelfBinningHistogramBase, hu.HypothesisTestCase):
def __init__(self, *args, **kwargs):
TestSelfBinningHistogramBase.__init__(self, bin_spacing="linear", dtype='f', abs=True)
hu.HypothesisTestCase.__init__(self, *args, **kwargs)
class TestSelfBinningHistogramLogarithmicFloatWithAbs(TestSelfBinningHistogramBase, hu.HypothesisTestCase):
def __init__(self, *args, **kwargs):
TestSelfBinningHistogramBase.__init__(self, bin_spacing="logarithmic", dtype='f', abs=True)
hu.HypothesisTestCase.__init__(self, *args, **kwargs)
class TestSelfBinningHistogramLinearWithNoneAbs(TestSelfBinningHistogramBase, hu.HypothesisTestCase):
def __init__(self, *args, **kwargs):
TestSelfBinningHistogramBase.__init__(self, bin_spacing="linear", dtype='d', abs=None)
hu.HypothesisTestCase.__init__(self, *args, **kwargs)
class TestSelfBinningHistogramLinearFloatWithNoneAbs(TestSelfBinningHistogramBase, hu.HypothesisTestCase):
def __init__(self, *args, **kwargs):
TestSelfBinningHistogramBase.__init__(self, bin_spacing="linear", dtype='f', abs=None)
hu.HypothesisTestCase.__init__(self, *args, **kwargs)
if __name__ == "__main__":
global_options = ["caffe2"]
core.GlobalInit(global_options)
unittest.main()
|